
sqlmap - security
development in

Miroslav Štampar

EuroPython 2011, Florence (Italy) June 23, 2011 2

Who are we?

Bernardo Damele A. G. (@inquisb)
Security Consultant / White-hat hacker
NGS Secure
London / UK
Lots of conference talks

Miroslav Stampar (@stamparm)
Professional software developer
AVL Croatia
Zagreb / Croatia
First conference talk

EuroPython 2011, Florence (Italy) June 23, 2011 3

What is sqlmap?

“sqlmap is an open source penetration testing
tool that automates the process of detecting
and exploiting SQL injection flaws and taking
over of database server(s)”

AIO (All-In-One) SQL injection tool
Over 10k updates and/or downloads monthly
Part of popular security distros: Backtrack,

Backbox, Web Security Dojo, OWASP Web
Testing,...

EuroPython 2011, Florence (Italy) June 23, 2011 4

Short history

Daniele Bellucci (@belch) – July 25th of 2006 –
birthday of sqlmap

September 2006 – Daniele leaves the project,
Bernardo takes it over

December 2009 – Miroslav replies to the call for
developers

EuroPython 2011, Florence (Italy) June 23, 2011 5

Current status (v1.0-dev)

Powerful detection engine
State of the art enumeration engine
Takeover functionalities (Metasploit,...)
Support for IDS/WAF evasion in form of

“tampering” scripts
Numerous optimizations
Remote file manipulation
Brute force methods

EuroPython 2011, Florence (Italy) June 23, 2011 6

Short future

GUI
Professional reporting (XML, PDF,...)
Out-of-Band (OOB) advanced techniques
Support for few DBMSes left
Generic lexical SQL parser
Advanced IDS/WAF evasion techniques
Upgrade to Python 3

EuroPython 2011, Florence (Italy) June 23, 2011 7

Project statistics (ohloh.net)

Languages used

LOC (Lines of code)

EuroPython 2011, Florence (Italy) June 23, 2011 8

Features

Fully supported backend DBMSes (and
growing): MySQL, Oracle, PostgreSQL, Microsoft
SQL Server, Microsoft Access, SQLite, Firebird,
Sybase and SAP MaxDB

Fully supported SQL injection techniques:
Blind, Error, Union (partial & full), Timed,
Stacked

Enumeration of: database users, users'
password hashes, users' privileges, users'
roles, databases, tables and columns

EuroPython 2011, Florence (Italy) June 23, 2011 9

Features (2)

Recognition and cracking of password hashes
Web server file upload/download
Arbitrary command execution and retrieval of

standard output
Establishment of an out-of-band TCP/UDP

connection between the attacker's machine
and the database server

EuroPython 2011, Florence (Italy) June 23, 2011 10

Community

Huge pool of pen/beta-testers active at our
mailing list (this moment 200 subscribed)

White/Grey/Black hat hackers
They all provide indispensable help by:

Reporting problems/bugs from real-life scenarios
Feature requests
Keeping morale high
Modest donations (covering SVN server costs)

EuroPython 2011, Florence (Italy) June 23, 2011 11

SQL injection for dummies

Vulnerable code (PHP/PgSQL):
$query = "SELECT * FROM products WHERE
product_id=" . $_GET['id']

Attack vector:
http://www.store.com/store.php?id=7; DROP TABLE
users

Resulting SQL statements:
SELECT * FROM products WHERE product_id=7; DROP
TABLE users

EuroPython 2011, Florence (Italy) June 23, 2011 12

Well known attacks

In period 2005 till 2007 Albert Gonzalez has
stolen 130 million credit card numbers

June 2007 – Microsoft U.K. Website defaced
December 2009 – RockYou (32 million

credentials stolen)
December 2009 – NASA
July 2010 – The Pirate Bay

EuroPython 2011, Florence (Italy) June 23, 2011 13

Well known attacks (2)

February 2011 – HBGary
March 2011 – MySQL (vulnerable page has

been:
http://mysql.com/customers/view/index.html?id=1170

March & May 2011 – Comodo (certificate
reseller)

May 2011... – PBS, Sony (#sownage – 20 sites
and counting), Fox, Infragard, Nintendo, CNN...

http://mysql.com/customers/view/index.html?id=1170

EuroPython 2011, Florence (Italy) June 23, 2011 14

Lizamoon (mass injection)

“LizaMoon mass injection hits over 226,000 URLs” -
Websense Security Labs (29th Mar 2011)

“The world was rocked today by LizaMoon - a SQL
injection attack which has compromised well over
one million Websites” – PCWorld (2nd Apr 2011)

EuroPython 2011, Florence (Italy) June 23, 2011 15

Random Quote

“Structured Query Language is becoming the
Achilles heel of the Internet.”

EuroPython 2011, Florence (Italy) June 23, 2011 16

“Exploits of a Mom” (XKCD #327)

EuroPython 2011, Florence (Italy) June 23, 2011 17

Funny Sweds

 The following lines were in Swedish election votes (swe.
VALJ = engl. voting):

;13;Hallands län;80;Halmstad;01;Halmstads
västra valkrets;0904;Söndrum 4;pwn DROP TABLE
VALJ;1

 “At least 'pwn DROP TABLE VALJ' got 1 vote in the
Swedish election” (comment on reddit :)

EuroPython 2011, Florence (Italy) June 23, 2011 18

Форум АНТИЧАТ - SQL Инъекции

“Awkward” Russian underground (open) forum
No chat, only vulnerable targets
Around 14 thousand targets (and growing)

available to anyone

EuroPython 2011, Florence (Italy) June 23, 2011 19

Blind-based technique

Also known as “boolean” based and/or “1=1”
4 out of 5 vulnerable cases are affected
Slow – 1 request per 1 bit of information
Very demanding and sensitive for

implementation (detection part)
Differentiation approach (difflib.quick_ratio())

or “exact” approach (e.g. “You are logged in” in
page)

Greatest obstacle is “dinamicity”
Multi-threading is most welcome

EuroPython 2011, Florence (Italy) June 23, 2011 20

Blind-based technique (2)

Original

“True”

“False”

EuroPython 2011, Florence (Italy) June 23, 2011 21

Error-based technique

1 out of 4 vulnerable cases are affected
Deliberate provoking of “invalid SQL query”

and retrieval of information from response
messages

Fast – 1 request per item of information
Easy detection and implementation
Greatest obstacle is trimming of error

messages (“substringing”)
Too DBMS specific
Advice: Turn off the error/debug messages!

EuroPython 2011, Florence (Italy) June 23, 2011 22

Error-based technique (2)

Example:

EuroPython 2011, Florence (Italy) June 23, 2011 23

Union query technique

Also known as “inband”
1 out of 2 vulnerable cases are affected
Fast(est) – 1 request per (multiple) item of

information
Partial vs Full union
Greatest obstacle is speed of detection part
Easy for implementation, at least for usage

part

EuroPython 2011, Florence (Italy) June 23, 2011 24

Union query technique (2)

Example 1 (partial):

Example 2 (full):

EuroPython 2011, Florence (Italy) June 23, 2011 25

Time delay-based technique

Pretty much the same as blind-based
Among slowest – 1 request per 1 bit of

information
Expect every second response to be delayed
Very demanding and sensitive for

implementation
Greatest obstacle is “lagging”
Single threading is a must for stable data

retrieval

EuroPython 2011, Florence (Italy) June 23, 2011 26

Time delay-based technique (2)

Example (delayed by 5 seconds):

Resulting SQL statement:
SELECT * FROM users WHERE id=1 AND 1=\
 (SELECT 1 FROM PG_SLEEP(5))--

EuroPython 2011, Florence (Italy) June 23, 2011 27

Stacked query technique

Pretty much identical to the time-based
Around 1 out of 2 DBMSes supports it
Deadly (Lizamoon)
MsSQL is most affected
Non-query based commands (INSERT,
DELETE,...)

EuroPython 2011, Florence (Italy) June 23, 2011 28

Stacked query technique (2)

Example (delayed by 5 seconds)

EuroPython 2011, Florence (Italy) June 23, 2011 29

Basic working examples

Blind-based: ...id=1 AND ASCII(SUBSTR((SELECT
password FROM public.users OFFSET 0 LIMIT
1)::text,1,1)) > 64--

Error-based: ...id=1 AND 6561=CAST(':abc:'||
(SELECT password FROM public.users OFFSET 0
LIMIT 1)::text||':def:' AS NUMERIC)--

Union query: ...id=1 UNION ALL SELECT NULL,
NULL,':abc:'||password||':def:'||':ghi:'||
password||':jkl:'||':mno:'||id||':pqr:' FROM
public.users--

EuroPython 2011, Florence (Italy) June 23, 2011 30

Basic working examples (2)

Time-delay based: id=1 AND 1924=(CASE WHEN
(ASCII(SUBSTR((SELECT password FROM
public.users OFFSET 0 LIMIT 1)::text,1,1)) >
64) THEN (SELECT 1924 FROM PG_SLEEP(1)) ELSE
1924 END)--

Stacked query: id=1; SELECT(CASE WHEN
(ASCII(SUBSTR((SELECT password FROM
public.users OFFSET 0 LIMIT 1)::text,1,1)) >
64) THEN (SELECT 1924 FROM PG_SLEEP(1)) ELSE
1924 END);--

EuroPython 2011, Florence (Italy) June 23, 2011 31

Program's structure

doc – manual, THANKS,...
lib – core modules
extra – 3rd party modules (chardet,

clientform,...)
plugins – DBMS specific modules
shell – stagers and backdoors (php, jsp,

asp,...)
tamper – tampering scripts (ifnull2ifisnull,...)
txt – wordlist, user-agents,...
xml – queries, payloads,...

EuroPython 2011, Florence (Italy) June 23, 2011 32

Program's workflow

Detection Fingerprinting Enumeration Takeover

Boolean

Error

Union

Timed

Stacked

MySQL

MsSQL

PgSQL

Oracle

MsAccess

Databases

Tables

Columns

Users

Passwords

Web shell

Metasploit

ICMPsh

File access

Registry

Setup

Knowledge
base

Configuration

Session

Connection

Payloads

Queries

...

...

EuroPython 2011, Florence (Italy) June 23, 2011 33

Development environment

Subversion (version control)
Redmine (project management)
Python 2.6 and/or 2.7
Text editor of choice (TC/Notepad++ on

Windows, Krusader/KrViewer on Linux)
Debugger of choice (pdb)
Proxy MITM tool (Burp)
Web browser of choice (Firefox)

EuroPython 2011, Florence (Italy) June 23, 2011 34

Testing environment

VMWare virtual machines
Linux Debian 5.0 32-bit (most used one)

Apache/PHP
 MySQL, Oracle, PgSQL, Firebird, SQLite

Windows XP 32-bit
XAMPP/PHP

 MySQL, SAP MaxDB, Sybase, SQLite, Access, etc.

IIS/ASP(.NET)
 MsSQL, MySQL, etc.

EuroPython 2011, Florence (Italy) June 23, 2011 35

Inference (binary search)

O(Log2n) complexity
Can be used in boolean, timed and stacked
e.g.:

Initial table ['A','B',...'Z']
AND (...) > 'M' → (True) → ['N',...'Z']
AND (...) > 'S' → (False) → ['N',...'S']
AND (...) > 'O' → (True) → ['P', 'R', 'S']
AND (...) > 'R' → (False) → ['P', 'R']
AND (...) > 'P' → (False) → ['P'] (resulting

char)

EuroPython 2011, Florence (Italy) June 23, 2011 36

Character prediction

High probability of prefix reuse
Common DBMS identificator names
Dynamic “prediction” tree
Example:

Input: CREATE SYNONYM, CREATE TABLE,
CREATE TRIGGER, CREATE USER, CREATE VIEW

Output tree: [C][R][E][A][T][E][S|T|U|V]
Appropriate for blind/time/stacked techniques

EuroPython 2011, Florence (Italy) June 23, 2011 37

“Null-connection”

Special HTTP requests (Web server specific)
Example (Apache):

Request: Range: bytes=-1
Response: Content-range: bytes 74-74/75 (True)
Response: Content-range: bytes 126-126/127

(False)
Example (IIS):

Request: HEAD
Response: Content-Length: 75 (True)
Response: Content-Length: 127 (False)

EuroPython 2011, Florence (Italy) June 23, 2011 38

Dinamicity removal

Biggest obstacle of blind/boolean technique
Javascript, ads, banners,...
Differentiation approach (difflib)
“Static blocks” vs “Dynamic blocks” (gaps)
Regular expressions to the rescue
Example:

</p></table>dynamic part<iframe>
r“</p></table>.*?<iframe>”

EuroPython 2011, Florence (Italy) June 23, 2011 39

Reflective values

Copy of payload (encoded?) inside response
Causing problems for blind/boolean technique
Source of lots of false positives/negatives (in

other tools :)
Regular expressions to the rescue
Example:

?id=1 AND 2>1
?id=1%20AND%202%3e1
r“(?i)id[^\n<]+1[^\n<]+AND[^\n<]+2[^\n<]
+1”

EuroPython 2011, Florence (Italy) June 23, 2011 40

Statistics is our friend

Normal distribution (bell curve)

“It shows how much variation or 'dispersion'
there is from the average (mean, or expected
value)”

99.9999999997440% of “normal” data inside 7σ

EuroPython 2011, Florence (Italy) June 23, 2011 41

Statistics is our friend (2)

UNION injection detection:
id=1 UNION ALL SELECT NULL, NULL,...
Right number of columns should stick out

Time-delay injection detection/usage:
id=1 AND 1=SELECT 1 FROM PG_SLEEP(5))--
Response time should stick out

Stacked-query injection detection/usage:
id=1; SELECT 1 FROM PG_SLEEP(5))--
Response time should stick out

EuroPython 2011, Florence (Italy) June 23, 2011 42

False positives

Boolean, timed and stacked affected
Example: search engine queries
Simple arithmetic tests
Searching for mere signs of “intelligence”
Example:

1+2==3
4==5
2==(7-5)
(6+5)==(6-5)

EuroPython 2011, Florence (Italy) June 23, 2011 43

Heuristic test

“Blatant” logic used for detection
Insufficient but great one shot test
Parameter “poisoning” with invalid (SQL) chars
Example:

?id=1''))(“(''(

Error message parsing and DBMS recognition

EuroPython 2011, Florence (Italy) June 23, 2011 44

Tampering scripts

IDS/WAF applications are getting better
Need for anti-anti hacking techniques
Example:

'UNION SELECT' → 'UnIOn SeleCT'
'A>B' → 'A NOT BETWEEN 0 AND B'
'SELECT password' → 'SELECT/**/password'

Input: payload Output: ftamper(payload)
Order of appearance & prioritized
14 till now and counting
Automation in near future

EuroPython 2011, Florence (Italy) June 23, 2011 45

“Pivoting”

Dumping technique
When lacking LIMIT/OFFSET mechanism
Around 1 in 2 DBMSes affected (e.g. MsSQL)
Count number of DISTINCT values
Choose column with highest number as “pivot”
Pivoting:

SELECT MIN(pivotCol) … WHERE pivotCol >
<previous_pivot_value>

SELECT otherCol … WHERE pivotCol =
<current_pivot_value>

EuroPython 2011, Florence (Italy) June 23, 2011 46

“SQL harvesting”

Google is our friend
filetype:sql "CREATE TABLE"
filetype:sql "INSERT INTO"

Extraction of table and column names
Decision based on frequency
Gathered data used by (brute force switches):

--common-tables
 ...AND EXISTS(SELECT * FROM table)

--common-columns
 ...AND EXISTS(SELECT column FROM table)

EuroPython 2011, Florence (Italy) June 23, 2011 47

Hash cracking

Implemented DBMS specific hash functions
10 and counting (mysql_passwd,
mysql_old_passwd, mssql_passwd, ...)

Regular expression based recognition
High-quality (10MB) dictionary/wordlist
Automatic brute-force approach
Blazing fast (core routines from hashlib)

EuroPython 2011, Florence (Italy) June 23, 2011 48

Quality tests

 --live-test

All relevant tests for 4 major DBMSes
Batch-like workflow
Declared in a structured XML file
Run against testing VMs

 --smoke-test

Recursively finds all modules
Tries importing every single one of them
Runs doctests if explicitly written

 ./extra/shutils/pylint.py

EuroPython 2011, Florence (Italy) June 23, 2011 49

Best “self-protection” advice

...you can get from a dude that makes this all
anti WAF/IDS, statistics, pivoting, dynamicity,
reflective values and similar mambo-jambo...

EuroPython 2011, Florence (Italy) June 23, 2011 50

Parametrized SQL statements

Don't sanitize your database inputs yourself
(prone to errors!)

Use language/library specific parametrized SQL
statements

Functions/libraries automatically sanitize
provided parameters

Good reference: http://bobby-tables.com/

http://bobby-tables.com/

EuroPython 2011, Florence (Italy) June 23, 2011 51

Parametrized SQL statements (2)

Example (Python DB API):
Don't:

 cmd = "UPDATE people SET name='%s' WHERE
id='%s'" % (name, id)

 cursor.execute(cmd)

Instead:
 cursor.execute('UPDATE people SET name=:1
WHERE id=:2', [name, id])

EuroPython 2011, Florence (Italy) June 23, 2011 52

Questions?

EuroPython 2011, Florence (Italy) June 23, 2011 53

Join the project

Project's web page:
http://sqlmap.sourceforge.net/

Contact:
dev@sqlmap.org

Users list:
sqlmap-users@lists.sourceforge.net

Twitter:
@sqlmap

Repository:
https://svn.sqlmap.org/sqlmap/trunk/sqlmap

http://sqlmap.sourceforge.net/
mailto:dev@sqlmap.org
mailto:sqlmap-users@lists.sourceforge.net
https://svn.sqlmap.org/sqlmap/trunk/sqlmap

	Got database access? Own the network! Bernardo Damele Assumpção Guimarães
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

