
Pipelining your music

<whoami>

Jyrki Pulliainen
Content team

Spotifier since January
Pythonista since 2.3

@nailor

</whoami>

Spotify?

● 10M monthly active users

● 18M tracks

● 100 years of music

● 20k added every day

Number fun

The Music Pipeline

ANTI HIPSTER

STACK

Hipster kitty by http://craigwheatart.tumblr.com

INGESTION

Transcoding
cluster

<xml/>

WMAL, FLAC

OGG & MP3

100s of TBs of data

Load of deliveries daily

Malformed data every day

Right tools for the right job

CC-BY raindrift http://www.flickr.com/photos/raindrift/7095238893/in/set-72157629492908038/

<XML />XSLT
XPath extensions

>>> def formerlify(_, name):
... return 'The artist formerly known as %s' %name
>>> #Namespace stuff
>>> from lxml import etree
>>> ns = etree.FunctionNamespace('http://my.org/myfunctions')
>>> ns['hello'] = hello
>>> ns.prefix = 'f'
>>> root = etree.XML('<a>Prince')
>>> print(root.xpath('f:hello(string(b))'))
... The artist formerly known as Prince

Fun(?) facts
● 10 different XML formats

○ Majors vs our own (indies)

○ One industry "standard"

Biggest XML 3.3M lines (350MB)
○ Bible apparently fits in 3MB of XML

● lxml ftw

>>> min(timeit.repeat('etree.parse("huge.xml")', setup="from
lxml import etree", number=1, repeat=5))
2.309144973754883

>>> min(timeit.repeat('etree.parse("huge.xml")', setup="from
xml.etree import cElementTree as etree", number=1, repeat=5))
3.0681779384613037

>>> min(timeit.timeit('etree.parse("huge.xml")', setup="from
xml.etree import ElementTree as etree", repeat=5, number=1))
Killed

>>> # (with PyPy 1.9)
>>> min(timeit.repeat('etree.parse("huge.xml")', setup="from
xml.etree import ElementTree as etree, number=1, repeat=5))
23.186518907546997

Merging

Fun(?) facts
● Artists don't have any global or even label specific IDs

○ Multiple artists with same name

○ Even spelling differs inside a single label

● Multiple versions of the same album

● Enormous search space!

○ (18 * 10**6) ** 2 == huge number

Insufficient
data

Machine learning!

>>> from unicodedata import normalize
>>> key = ''.join(normalize('NFD', char)[0].lower() for char
in title)[5]

Tip: Reduce search space!

Side note: Levenshtein is expensive
=> use other edit distances too

(or use PyPy, 4x speed increase ftw)

CC-BY Stuart Bassil http://www.flickr.com/photos/93014478@N00/3358790995/

Pro-tips
● If data is relational, use relational database (duh)

● Don't over-normalize yourself, BCNF is rarely beneficial

● Weight between denormalize vs. moar indices

● Let the DB do the hard lifting, query planner is your

friend!

● Asynchronous!

● RabbitMQ + amqplib

● One master, 49 slaves

● Isilon storage => 8Gbit/s throughput!

1M / DAY

Index building
....with Java

Why not Python?
● Not powerful enough for computationally intensive stuff

● We use Lucene for Search, so Java is a natural choice

...but I'd like to try PyPy here.

The Music Distribution

TTL one day
time to live (laɪv)

Publishing an index

 SCPing around, moving
hundreds of GBs daily

...not totally free of issues either

Future == BitTorrent

Index format?
Read only K/V (mostly)

Keep your eye on it

Mind the speed!

Experiment

Ditch your code

Thank you!
spoti.fi/ep_2012

