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Social Network Analysis 
analyzes the structure of 
relations among (social, political, 
organizational) actors



Social Network Analysis

Complex Network Analysis

Element Level

Group Level

Network Level

Complex Network Models

Data-driven Approach

Mechanistic Approach

Game-Theoretic Approach

Processes on Complex Networks
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Matplotlib
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Dimensions of
Social Networks

Nodes Edges
Max 

Nodes Density
student relationships
physics co-authorship
math co-authorship
film actors
Skype instantaneous usage
telephone call graph
World "Friendship"

6E+02 5E+02 3.28E+05 1.45E-03
5E+04 2E+05 2.80E+09 8.76E-05
3E+05 5E+05 6.42E+10 7.74E-06
4E+05 3E+07 2.02E+11 1.26E-04
2E+07 3E+06 4.00E+14 7.50E-09
5E+07 8E+07 2.21E+15 3.62E-08
7E+09 1E+12 4.76E+19 2.17E-08

Density: m/n2

Social Networks are almost always sparse
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n ⋅ dunbar number
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Mathematical 
Representations

A graph G is a triple G=(V, E, e) where V is a set 
of vertices, E is a set of edges and e is a function 
e: E →VxV mapping edges to their endpoints

Sometimes is useful to consider E = V×V

Graphs can have self-links, multiple links (multi-
graph), labelled links

A graph is directed if e: E →V(2)

We indicate with n the order |V| of the graph 
and with m the size |E| of the graph



Computer 
Representations

Adjacency Matrix (n×n):

Incidence Matrix (n×m):

Adjacency List:

dict: keys are nodes, values are lists/sets of nodes

Incidence List:

dict: keys are nodes, values are sequences of edges

dict: keys are nodes, values are the endpoints tuples

Aij =
1 if (i,j) ∈img(e)
0 otherwise

⎧
⎨
⎩

Bvj =
1 if (u, j) ∃v (u,v) = e( j)
0 otherwise

⎧
⎨
⎩



Sparse Matrices

An adjacency/incidence matrix is better represented with 
scipy.sparse matrices

Different implementations provide different trade-offs

Sometimes it is possible to convert matrices in different 
formats efficiently 

Different implementations have different points of strengths 
(choose the appropriate implementation depending on what 
is needed)

numpy matrices are great, but only for small networks

Relatively easy to write some algorithms and efficiency 
depends from the implementation (and C code)

Cumbersome to store additional data on nodes or edges



Incidence List

This is how graphs are represented in Jung (a 
widespread Java library which can be used with 
Jython)

Egde objects are “reified” (contain attributes)

Node objects usually contain attributes as well

“Very OO” [ perhaps an overkill ]

Following the definition leads to inefficiencies



class IncidenceListGraph(object):
    def __init__(self):
        self.incidence = {}
        self.endpoints = {}

    def add_node(self, node):
        self.incidence.setdefault(node, set())

    def add_edge(self, edge, start, end):
        self.endpoints[edge] = (start, end)
        try:
            starting_node_links = self.incidence[start]
            end_node_links = self.incidence[end]
        except KeyError:
            return False
        else:
            starting_node_links.add(edge)
            end_node_links.add(edge)
            return True

Slow lookup: is there a connection between i and j?



class IncidenceListJUNGGraph(object):
    def __init__(self):
        self.incidence = {}
        self.endpoints = {}

    def add_node(self, node):
        self.incidence.setdefault(node, dict())

    def add_edge(self, edge, start, end):
        self.endpoints[edge] = (start, end)
        try:
            starting_node_links = self.incidence[start]
            end_node_links = self.incidence[end]
        except KeyError:
            return False
        else:
            starting_node_links[end] = edge
            end_node_links[start] = edge
            return True



Adjacency List

Somewhat the “more pythonic way” 
(http://www.python.org/doc/essays/graphs.html)

Rather efficient in terms of space and costs of 
elementary operations

Networkx implementation of graphs is based on 
this idea

    graph = {'A': ['B', 'C'],
             'B': ['C', 'D'],
             'C': ['D'],
             'D': ['C'],
             'E': ['F'],
             'F': ['C']}

http://www.python.org/doc/essays/graphs.html
http://www.python.org/doc/essays/graphs.html


class AdjacencyListGraph(object):
    def __init__(self):
        self.node = {}
        self.adj = {}

    def add_node(self, node, **attrs):
        if node not in self.adj:
            self.adj[node] = {}
            self.node[node] = attrs
        else: # update attr even if node already exists
            self.node[node].update(attrs)

    def add_edge(self, u, v, **attrs):
        if u not in self.adj:
            self.adj[u] = {}
            self.node[u] = {}
        if v not in self.adj:
            self.adj[v] = {}
            self.node[v] = {}

        datadict=self.adj[u].get(v,{})
        datadict.update(attrs)
        
        self.adj[u][v] = datadict
        self.adj[v][u] = datadict Counting edges is not

efficient!



Graph & File Formats

Networkx graphs can be 
created from and converted to 

numpy matrices

scipy sparse matrices

dicts of lists

dicts of dicts

lists of edges

Networkx graphs can be read 
from and saved to the 
following formats

textual formats (adj lists)

GEXF (gephi)

GML

GraphML

Pajek

...



Network
Properties



Degree

Directed

indegree:

outdegree:

degree:

Mean degree:

Degree distribution: 

Undirected

degree: ki
in = Aji

j
∑

ki
out = Aij

j
∑

ki = ki
in + ki

out

k = 1
n

ki
i
∑

pk =
1
n
# i ki = k{ }

ki = Aji
j
∑ = Aij

j
∑



Network Level Properties

Characteristic Path Length

Clustering Coefficient

Degree Distribution

Distribution of other node level properties

Correlations of node level properties

Assortativity (epidemics)



Characteristic Path Length

L(i,j) is the length shortest path(s) between i and j

                                 is the average shortest path of i

                    is the characteristic path length of the 
network (CPL)

Computation of all the shortest paths is usually done 
with Dijkstra algorithm (networkx)

In practice: O(nm + n2 log n)

Networkx can compute shortest paths, CPL, etc.

Li = n −1( )−1 L(i, j)
j
∑

L = n−1 Lii∑



from heapq import heappush, heappop
# based on recipe 119466
def dijkstra_shortest_path(graph, source):
    distances = {} 
    predecessors = {}
    seen = {source: 0}
    priority_queue = [(0, source)]

    while priority_queue:
        v_dist, v = heappop(priority_queue)
        distances[v] = v_dist
        
        for w in graph[v]:
            vw_dist = distances[v] + 1
            if w not in seen or vw_dist < seen[w]:
                seen[w] = vw_dist
                heappush(priority_queue,(vw_dist,w))
                predecessors[w] = v

    return distances, predecessors

O(m· pushQ + n·  ex-minQ)=O(m log n + n log n)



from heapq import heappush, heappop
# based on recipe 119466
def dijkstra_shortest_path(graph, source):
    distances = {} 
    predecessors = {}
    seen = {source: 0}
    priority_queue = [(0, source)]

    while priority_queue:
        v_dist, v = heappop(priority_queue)
        distances[v] = v_dist
        
        for w in graph[v]:
            vw_dist = distances[v] + 1
            if w not in seen or vw_dist < seen[w]:
                seen[w] = vw_dist
                heappush(priority_queue,(vw_dist,w))
                predecessors[w] = v

    return distances, predecessors

O(m· pushQ + n·  ex-minQ)=O(m log n + n log n)



from heapq import heappush, heappop
# based on recipe 119466
def dijkstra_shortest_path(graph, source):
    distances = {} 
    predecessors = {}
    seen = {source: 0}
    priority_queue = [(0, source)]

    while priority_queue:
        v_dist, v = heappop(priority_queue)
        distances[v] = v_dist
        
        for w in graph[v]:
            vw_dist = distances[v] + 1
            if w not in seen or vw_dist < seen[w]:
                seen[w] = vw_dist
                heappush(priority_queue,(vw_dist,w))
                predecessors[w] = v

    return distances, predecessors

O(m· pushQ + n·  ex-minQ)=O(m log n + n log n)



From mean to median

Computing the the shortest paths for all but the 
smallest networks (< 1000 nodes) is essentially 
not feasible

However, the median of the average shortest 
paths is easier to estimate and is a good metric, 
thus it is common to define the characteristic 
path length as the median (instead of the mean) 
of the average shortest path length



Approximate Medians

M(q) is a q-median if at least qn of the numbers in 
a set are less than or equal to M(q) and at least 
(1-q)n are greater than M(q)

So a regular median is a 0.5-median

L(q, δ) is a (q, δ)-median if at least qn(1-δ) 
elements in the set are less than or equal to L(q, δ) 
and at least (1-q)n(1-δ) are greater than L(q, δ)



Huber Algorithm

A value for L(q, δ) can be found taking a sample of 
s elements and looking at the M(q) median 

If                             the value is correct with 

probability 

s = 2
q2
ln 2


1−δ( )2
δ 2

1− 



def approximate_cpl(graph, q=0.5, delta=0.15, eps=0.05):
    s = estimate_s(q, delta, eps)
    s = int(math.ceil(s))
    if graph.number_of_nodes() <= s:
        sample = graph.nodes_iter()
    else:
        sample = random.sample(graph.adj.keys(), s)

    averages = []
    for node in sample:
        path_lengths = 
nx.single_source_shortest_path_length(graph, node)
        average = sum(path_lengths.itervalues())/float
(len(path_lengths))
        averages.append(average)
    averages.sort()
    median_index = int(len(averages) * q + 1)
    return averages[median_index]





Local Clustering 
Coefficient

Green lines are the links between the 
i and its neighbors

Red lines are the links between the 
neighbors of i

Cyan dotted lines are in the 
complete graph and not in the 
network

Ci=7/15=0.46



Local Clustering 
Coefficient

Let T(i) the number of distinct triangles having node i as a 
vertex

The maximum number of possible connections in the 
neighborhood of i is ki(ki-1)/2

The local clustering coefficient of i is:

The clustering coefficient is:

A different (and better) definition exists: 

Ci =
ki
2( )−1T (i) = 2T (i)

ki (ki −1)

C = 1
n

Ci
i∈V
∑

C =
number of closed paths of length 2( )

number of paths of length 2( ) =
number of triangles( )× 3

number of connected triples( )
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Local Clustering 
Coefficient
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Local Clustering 
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Degree Distribution

Degree distribution: frequency of the degrees of 
the nodes

Most social networks have right-skewed degree 
distributions

Most nodes have low degree, some have 
exceptionally high degree

Keep in mind when sampling 

node based sampling

edge based sampling



Power-Laws

General form of a power-law degree distribution

Graphs with power law degree distribution are 
called scale-free

Not all moments are defined!

ln pk = −α ln k + c

pk = Ck
−α

pk / p ′k = p2k / p2 ′k

E[xn ] = xn p(x)dx =∫
= xn−α dx∫





Random Graphs

An Erdös-Rényi random graph model G(n, m) is a 
probability distribution over the set of simple 
graphs with n nodes and m edges

A mathematically equivalent model (for large n) 
is G(n, p). When a graph is drawn from G(n, p) 
each possible edge is independently placed with 
probability p

Other than the naive ways to code the process, 
there are efficient O(n+m) algorithms 
(implemented in networkx)



Random Graphs



ER-Random Graphs

It is unsurprising that ER-random graphs are not 
good models for social networks (though studies 
on a high school romance network shows 
striking similarities with ER-random graphs

C = k n −1( )
k = 1− p( )n

pk  e
−c k k

k !

Average degree:

Clustering coefficient:

Degree distribution:

Diameter in the order of log n



Social Networks and 
Random Graphs

Social Networks have short characteristic path 
length (in the order of log n)

Social Networks have high clustering coefficient 
(wrt. Random Graphs with comparable number 
of nodes and average degree)

Social Networks have right skewed degree 
distributions

Generative approach?



Real World Examples
Real Online Social Networks

OSN Users Links �ki� C CPL γ assort.

Club Nexus 1 2.5 K 10 K 8.2 0.17 4 - -

Cyworld 2 12 M 191 M 31.6 0.16 3.2 4; 1 -0.13

Cyworld T. 2 92 K 0.7 M 15.3 0.32 7.2 - 0.43

Orkut 2 100 K 1.5 M 30.2 0.30 3.8 3.7 0.31

Orkut 3 3 M 223 M 106 0.17 4.2 1.50 0.07

Flickr 3 1,8 M 22 M 12.2 0.31 5.7 1.7 0.20

Live Journal 3 5 M 77 M 17 0.33 5.9 1.6 0.18

Youtube 3 1,1 M 5 M 4.29 0.14 5.1 ∼ 2 -0.03

� blue bold: more than 90% of nodes analysed

� black: less than 90%, more than 1% of nodes analysed

� red italic: < 1% of nodes analysed

1
[Adamic 05]

2
[Ahn 07]

3
[Mislove 07]

Bergenti, Franchi, Poggi (Univ. Parma) Models for Agent-based Simulation of SN SNAMAS ’11 8 / 19



Group Level Properties

Identification of cohesive sub-groups

one-mode networks 
(n-clique, n-clan, n-club, k-plex, k-core, LS set)

two-mode networks

Network Positions

Blockmodels

Networkx gives them all!

Efficiency, interpretation



Group Level Properties

Identification of cohesive sub-groups

one-mode networks 
(n-clique, n-clan, n-club, k-plex, k-core, LS set)

two-mode networks

Network Positions

Blockmodels

Networkx gives them all!

Efficiency, interpretation

Highly connected core

Fringe

Stars & Isolated Nodes



Node level properties

“Centrality” metrics

Ranking

Study distribution & correlation



Betweenness centrality

Let Pi(k,j) be the number of shortest paths 
between k and j that i lies on 

Let P(k,j) the total number of shortest paths 
between k and j

If Pi(k,j)P(k,j)-1≅1, then i lies on most shortest 
paths between k and j

The betweenness centrality of a node i is:

ci
B =

n −1
2

⎛
⎝⎜

⎞
⎠⎟

−1
Pi (k, j)
P(k, j)k≠ j

i /∈{k , j}

∑



def attack(graph, centrality_metric):
    graph = graph.copy()
    steps = 0
    ranks = centrality_metric(graph)
    nodes = sorted(graph.nodes(), key=lambda n: ranks[n])

    while nx.is_connected(graph):
        graph.remove_node(nodes.pop())
        steps += 1
    else:
        return steps



Creating	
  powerlaw	
  cluster	
  with	
  1000	
  elements.
Creating	
  G(1000,0.007964)
Starting	
  attacks.
Social	
  network	
  broke	
  after	
  220	
  steps	
  with	
  random	
  
attack.
Random	
  network	
  broke	
  after	
  10	
  steps	
  with	
  random	
  
attack.
Social	
  network	
  broke	
  after	
  22	
  steps	
  with	
  betweenness	
  
ranking.
Random	
  network	
  broke	
  after	
  157	
  steps	
  with	
  betweenness	
  
ranking.
Social	
  network	
  broke	
  after	
  19	
  steps	
  with	
  pagerank.
Random	
  network	
  broke	
  after	
  149	
  steps	
  with	
  pagerank.
Social	
  network	
  broke	
  after	
  19	
  steps	
  with	
  degree.
Random	
  network	
  broke	
  after	
  265	
  steps	
  with	
  degree.



Visualization



Visualization

Networkx

Matplotlib

PyGraphViz

Pydot

Gephi

Guess

Protovis

Force directed algorithms

Energy minimization

Fixed layouts (circle)

Different colors on nodes

Dynamic Manipulation

?



nx.draw_graphviz(g, node_size=nx.degree(g).values(), with_labels=False,         
                              node_color=nx.betweenness_centrality(g).values(),
                              edge_color='grey')



import json
from random import randint
import networkx as nx

graph = nx.powerlaw_cluster_graph(1000, 4, 0.05)
dict_of_lists = nx.to_dict_of_lists(graph)

nodes = [dict(nodeName=str(node), group=randint(1, 100))
         for node in dict_of_lists.iterkeys()]
edges = []
for node, neighbors in dict_of_lists.iteritems():
    for neighbor in neighbors:
        edges.append(
            dict(source=node, target=neighbor, value=1)
        )
        edges.append(
            dict(target=node, source=neighbor, value=1)
        )
json_like_structure = dict(nodes=nodes, links=edges)
with open('social_network.js', 'w') as fp:
    json.dump(json_like_structure, fp)



Protovis



var vis = new pv.Panel()
    .width(693)
    .height(693)
    .top(90)
    .left(90);

var layout = vis.add(pv.Layout.Matrix)
    .nodes(network.nodes)
    .links(network.links)
    .sort(function(a, b) b.group - a.group);

layout.link.add(pv.Bar)
    .fillStyle(function(l) l.linkValue
        ? ((l.targetNode.group == l.sourceNode.group)
        ? color(l.sourceNode) : "#555") : "#eee")
    .antialias(false)
    .lineWidth(1);

layout.label.add(pv.Label)
    .textStyle(color);

vis.render();

Protovis



var vis = new pv.Panel()
    .width(w)
    .height(h)
    .fillStyle("white")
    .event("mousedown", pv.Behavior.pan())
    .event("mousewheel", pv.Behavior.zoom());

var force = vis.add(pv.Layout.Force)
    .nodes(network.nodes)
    .links(network.links);

force.link.add(pv.Line);

force.node.add(pv.Dot)
    .size(function(d) (d.linkDegree + 4) * Math.pow
(this.scale, -1.5))
    .fillStyle(function(d) d.fix ? "brown" : colors
(d.group))
    .strokeStyle(function() this.fillStyle().darker())
    .lineWidth(1)
    .title(function(d) d.nodeName)
    .event("mousedown", pv.Behavior.drag())
    .event("drag", force);

vis.render();

Protovis



Thanks for 
your 

Kind Attention
Enrico Franchi (efranchi@ce.unipr.it)

https://gist.github.com/1010039

mailto:efranchi@ce.unipr.it
mailto:efranchi@ce.unipr.it
https://gist.github.com/1010039
https://gist.github.com/1010039


PageRank



Page Rank

Being cited by an (important) page which collects 
links is not the same than being cited by a page 
“on the same subject”

Important pages are cited more often

xi = Aji

x j
k jj

∑



Page Rank

In order to simplify the notation, we define the H 
matrix:

We can try to compute             with successive 
approximations, like in                      with t→∞
Each iteration takes O(n2) operations

the number of non-zero entries is O(n), which 
makes the computation O(n)

Convergence?

Hij = Aijk j
−1

xH = x
x(t) = x(0)Ht



Interpretation of 
Page Rank

Random Surfer

If time spent surfing approximates infinity, time 
spent on a given page is a measure of that page 
importance

Dangling Nodes



Perron-Froebenius 
Theorem

If T is a nonnegative row-stochastic matrix (i.e., 
the entries in each row sum to 1), there is a non 
negative eigenvector v such that
and has a corresponding eigenvalue λ=1

If Tt has all positive entries for some t (i.e., T is 
primitive), then all other eigenvalues have 
magnitude less than 1

A matrix is primitive if it has only one eigenvalue 
on the spectral circle

vT = λv



Primitivity Adjustment

The H matrix has almost all the right properties. 
Dangling nodes make it non-stochastic (we say 
it’s quasi-stochastic)

With the random walker intuition, we can fix 
everything

where a is the dangling node vector (ai=1 if i is a 
dangling node)

S = H + a 1
n
eT⎛

⎝⎜
⎞
⎠⎟



Markov Chains 
interpretation

S is the matrix of a Markov process

It is stochastic, irreducible (equivalent to say that 
the corresponding graph is strongly connected) 
and aperiodic

aperiodic + irreducible → primitive

From a mathematical point of view, everything is 
fine. However, we are implying that surfers never 
“jump” to entirely new pages



The Google Matrix

Let α be a scalar between 0 and 1

G is stochastic, because the convex combination 
of two stochastic matrices is stochastic

G is irreducible (every page is connected with 
every other page)

G is aperiodic

G is (unfortunately) dense

G = αS +(1−α ) ee
T

n



Computing the PageRank

We could see the computation as:

an eigenvector problem:

G = αS +(1−α )1 n eeT

= α(H +1 naeT ) +(1−α )1 n eeT

= αH + (αa +(1−α )e)1 n eT

xT = xTG
xT e = 1

solution of linear hom. system

xT (I −G) = 0T

xT e = 1



The Power-Method

The power method is usually slow, but has lots of 
nice properties:

is matrix-free (matrix is only accessed, not 
manipulated)

the matrix is easy to distribute, since its sparse

x(k+1)T = x(k )TG
= αx(k )TS +(1−α )1 nx(k )T eeT

= αx(k )T (H +1 naeT ) +(1−α )1 nx(k )T eeT

= αx(k )TH + (αx(k )Ta +(1−α ))eT n



Personalization vector

Instead of assuming a random probability to jump 
on any page, we consider an “personalized 
probability”

x(k+1)T = x(k )TGv

= αx(k )TSv +(1−α )x
(k )T evT

= αx(k )T (H +avT ) +(1−α )x(k )T evT

= αx(k )TH + (αx(k )Ta +(1−α ))vT



... in Python

Use networkx

nx.pagerank

nx.pagerank_numpy

nx.pagerank_scipy


