
Social
Network
Analysis
in Python
Enrico Franchi (efranchi@ce.unipr.it)
Dipartimento Ingegneria dell’Informazione
Università degli Studi di Parma

mailto:efranchi@ce.unipr.it
mailto:efranchi@ce.unipr.it

Outline

Introduction

Data representation

Network Properties

Network Level

Group Level

Node Level

Visualization

PageRank

Social Network
Analysis

in Python

Social Network
Analysis

in Python

“A social network is a
finite set of actors and the
relations defined on them”

“A social network is a
finite set of actors and the
relations defined on them”

NETWORK

“A social network is a
finite set of actors and the
relations defined on them”

NETWORK

PEOPLE [ACTORS]

“A social network is a
finite set of actors and the
relations defined on them”

NETWORK

PEOPLE [ACTORS]
CONNECTIONS [RELATIONS]

Social Network
Analysis

in Python

Social Network
Analysis

in Python

Social Network Analysis
analyzes the structure of
relations among (social, political,
organizational) actors

Social Network Analysis

Complex Network Analysis

Element Level

Group Level

Network Level

Complex Network Models

Data-driven Approach

Mechanistic Approach

Game-Theoretic Approach

Processes on Complex Networks

Maths

Theor.
Physics

Sociology

Computer
Science

BiologySNA

Social Network
Analysis

in Python

Social Network
Analysis

in Python

Matplotlib

Networkx

Dimensions of
Social Networks

Nodes Edges
Max

Nodes Density
student relationships
physics co-authorship
math co-authorship
film actors
Skype instantaneous usage
telephone call graph
World "Friendship"

6E+02 5E+02 3.28E+05 1.45E-03
5E+04 2E+05 2.80E+09 8.76E-05
3E+05 5E+05 6.42E+10 7.74E-06
4E+05 3E+07 2.02E+11 1.26E-04
2E+07 3E+06 4.00E+14 7.50E-09
5E+07 8E+07 2.21E+15 3.62E-08
7E+09 1E+12 4.76E+19 2.17E-08

Density: m/n2

Social Networks are almost always sparse

Dimensions of
Social Networks

Nodes Edges
Max

Nodes Density
student relationships
physics co-authorship
math co-authorship
film actors
Skype instantaneous usage
telephone call graph
World "Friendship"

6E+02 5E+02 3.28E+05 1.45E-03
5E+04 2E+05 2.80E+09 8.76E-05
3E+05 5E+05 6.42E+10 7.74E-06
4E+05 3E+07 2.02E+11 1.26E-04
2E+07 3E+06 4.00E+14 7.50E-09
5E+07 8E+07 2.21E+15 3.62E-08
7E+09 1E+12 4.76E+19 2.17E-08

Density: m/n2

Social Networks are almost always sparse

n ⋅ dunbar number

Data Representation

Mathematical
Representations

A graph G is a triple G=(V, E, e) where V is a set
of vertices, E is a set of edges and e is a function
e: E →VxV mapping edges to their endpoints

Sometimes is useful to consider E = V×V

Graphs can have self-links, multiple links (multi-
graph), labelled links

A graph is directed if e: E →V(2)

We indicate with n the order |V| of the graph
and with m the size |E| of the graph

Computer
Representations

Adjacency Matrix (n×n):

Incidence Matrix (n×m):

Adjacency List:

dict: keys are nodes, values are lists/sets of nodes

Incidence List:

dict: keys are nodes, values are sequences of edges

dict: keys are nodes, values are the endpoints tuples

Aij =
1 if (i,j) ∈img(e)
0 otherwise

⎧
⎨
⎩

Bvj =
1 if (u, j) ∃v (u,v) = e(j)
0 otherwise

⎧
⎨
⎩

Sparse Matrices

An adjacency/incidence matrix is better represented with
scipy.sparse matrices

Different implementations provide different trade-offs

Sometimes it is possible to convert matrices in different
formats efficiently

Different implementations have different points of strengths
(choose the appropriate implementation depending on what
is needed)

numpy matrices are great, but only for small networks

Relatively easy to write some algorithms and efficiency
depends from the implementation (and C code)

Cumbersome to store additional data on nodes or edges

Incidence List

This is how graphs are represented in Jung (a
widespread Java library which can be used with
Jython)

Egde objects are “reified” (contain attributes)

Node objects usually contain attributes as well

“Very OO” [perhaps an overkill]

Following the definition leads to inefficiencies

class IncidenceListGraph(object):
 def __init__(self):
 self.incidence = {}
 self.endpoints = {}

 def add_node(self, node):
 self.incidence.setdefault(node, set())

 def add_edge(self, edge, start, end):
 self.endpoints[edge] = (start, end)
 try:
 starting_node_links = self.incidence[start]
 end_node_links = self.incidence[end]
 except KeyError:
 return False
 else:
 starting_node_links.add(edge)
 end_node_links.add(edge)
 return True

Slow lookup: is there a connection between i and j?

class IncidenceListJUNGGraph(object):
 def __init__(self):
 self.incidence = {}
 self.endpoints = {}

 def add_node(self, node):
 self.incidence.setdefault(node, dict())

 def add_edge(self, edge, start, end):
 self.endpoints[edge] = (start, end)
 try:
 starting_node_links = self.incidence[start]
 end_node_links = self.incidence[end]
 except KeyError:
 return False
 else:
 starting_node_links[end] = edge
 end_node_links[start] = edge
 return True

Adjacency List

Somewhat the “more pythonic way”
(http://www.python.org/doc/essays/graphs.html)

Rather efficient in terms of space and costs of
elementary operations

Networkx implementation of graphs is based on
this idea

 graph = {'A': ['B', 'C'],
 'B': ['C', 'D'],
 'C': ['D'],
 'D': ['C'],
 'E': ['F'],
 'F': ['C']}

http://www.python.org/doc/essays/graphs.html
http://www.python.org/doc/essays/graphs.html

class AdjacencyListGraph(object):
 def __init__(self):
 self.node = {}
 self.adj = {}

 def add_node(self, node, **attrs):
 if node not in self.adj:
 self.adj[node] = {}
 self.node[node] = attrs
 else: # update attr even if node already exists
 self.node[node].update(attrs)

 def add_edge(self, u, v, **attrs):
 if u not in self.adj:
 self.adj[u] = {}
 self.node[u] = {}
 if v not in self.adj:
 self.adj[v] = {}
 self.node[v] = {}

 datadict=self.adj[u].get(v,{})
 datadict.update(attrs)

 self.adj[u][v] = datadict
 self.adj[v][u] = datadict Counting edges is not

efficient!

Graph & File Formats

Networkx graphs can be
created from and converted to

numpy matrices

scipy sparse matrices

dicts of lists

dicts of dicts

lists of edges

Networkx graphs can be read
from and saved to the
following formats

textual formats (adj lists)

GEXF (gephi)

GML

GraphML

Pajek

...

Network
Properties

Degree

Directed

indegree:

outdegree:

degree:

Mean degree:

Degree distribution:

Undirected

degree: ki
in = Aji

j
∑

ki
out = Aij

j
∑

ki = ki
in + ki

out

k = 1
n

ki
i
∑

pk =
1
n
i ki = k{ }

ki = Aji
j
∑ = Aij

j
∑

Network Level Properties

Characteristic Path Length

Clustering Coefficient

Degree Distribution

Distribution of other node level properties

Correlations of node level properties

Assortativity (epidemics)

Characteristic Path Length

L(i,j) is the length shortest path(s) between i and j

 is the average shortest path of i

 is the characteristic path length of the
network (CPL)

Computation of all the shortest paths is usually done
with Dijkstra algorithm (networkx)

In practice: O(nm + n2 log n)

Networkx can compute shortest paths, CPL, etc.

Li = n −1()−1 L(i, j)
j
∑

L = n−1 Lii∑

from heapq import heappush, heappop
based on recipe 119466
def dijkstra_shortest_path(graph, source):
 distances = {}
 predecessors = {}
 seen = {source: 0}
 priority_queue = [(0, source)]

 while priority_queue:
 v_dist, v = heappop(priority_queue)
 distances[v] = v_dist

 for w in graph[v]:
 vw_dist = distances[v] + 1
 if w not in seen or vw_dist < seen[w]:
 seen[w] = vw_dist
 heappush(priority_queue,(vw_dist,w))
 predecessors[w] = v

 return distances, predecessors

O(m· pushQ + n· ex-minQ)=O(m log n + n log n)

from heapq import heappush, heappop
based on recipe 119466
def dijkstra_shortest_path(graph, source):
 distances = {}
 predecessors = {}
 seen = {source: 0}
 priority_queue = [(0, source)]

 while priority_queue:
 v_dist, v = heappop(priority_queue)
 distances[v] = v_dist

 for w in graph[v]:
 vw_dist = distances[v] + 1
 if w not in seen or vw_dist < seen[w]:
 seen[w] = vw_dist
 heappush(priority_queue,(vw_dist,w))
 predecessors[w] = v

 return distances, predecessors

O(m· pushQ + n· ex-minQ)=O(m log n + n log n)

from heapq import heappush, heappop
based on recipe 119466
def dijkstra_shortest_path(graph, source):
 distances = {}
 predecessors = {}
 seen = {source: 0}
 priority_queue = [(0, source)]

 while priority_queue:
 v_dist, v = heappop(priority_queue)
 distances[v] = v_dist

 for w in graph[v]:
 vw_dist = distances[v] + 1
 if w not in seen or vw_dist < seen[w]:
 seen[w] = vw_dist
 heappush(priority_queue,(vw_dist,w))
 predecessors[w] = v

 return distances, predecessors

O(m· pushQ + n· ex-minQ)=O(m log n + n log n)

From mean to median

Computing the the shortest paths for all but the
smallest networks (< 1000 nodes) is essentially
not feasible

However, the median of the average shortest
paths is easier to estimate and is a good metric,
thus it is common to define the characteristic
path length as the median (instead of the mean)
of the average shortest path length

Approximate Medians

M(q) is a q-median if at least qn of the numbers in
a set are less than or equal to M(q) and at least
(1-q)n are greater than M(q)

So a regular median is a 0.5-median

L(q, δ) is a (q, δ)-median if at least qn(1-δ)
elements in the set are less than or equal to L(q, δ)
and at least (1-q)n(1-δ) are greater than L(q, δ)

Huber Algorithm

A value for L(q, δ) can be found taking a sample of
s elements and looking at the M(q) median

If the value is correct with

probability

s = 2
q2
ln 2


1−δ()2
δ 2

1− 

def approximate_cpl(graph, q=0.5, delta=0.15, eps=0.05):
 s = estimate_s(q, delta, eps)
 s = int(math.ceil(s))
 if graph.number_of_nodes() <= s:
 sample = graph.nodes_iter()
 else:
 sample = random.sample(graph.adj.keys(), s)

 averages = []
 for node in sample:
 path_lengths =
nx.single_source_shortest_path_length(graph, node)
 average = sum(path_lengths.itervalues())/float
(len(path_lengths))
 averages.append(average)
 averages.sort()
 median_index = int(len(averages) * q + 1)
 return averages[median_index]

Local Clustering
Coefficient

Green lines are the links between the
i and its neighbors

Red lines are the links between the
neighbors of i

Cyan dotted lines are in the
complete graph and not in the
network

Ci=7/15=0.46

Local Clustering
Coefficient

Let T(i) the number of distinct triangles having node i as a
vertex

The maximum number of possible connections in the
neighborhood of i is ki(ki-1)/2

The local clustering coefficient of i is:

The clustering coefficient is:

A different (and better) definition exists:

Ci =
ki
2()−1T (i) = 2T (i)

ki (ki −1)

C = 1
n

Ci
i∈V
∑

C =
number of closed paths of length 2()

number of paths of length 2() =
number of triangles()× 3

number of connected triples()

Local Clustering
Coefficient

Let T(i) the number of distinct triangles having node i as a
vertex

The maximum number of possible connections in the
neighborhood of i is ki(ki-1)/2

The local clustering coefficient of i is:

The clustering coefficient is:

A different (and better) definition exists:

Ci =
ki
2()−1T (i) = 2T (i)

ki (ki −1)

C = 1
n

Ci
i∈V
∑

C =
number of closed paths of length 2()

number of paths of length 2() =
number of triangles()× 3

number of connected triples()

nx.clustering

Local Clustering
Coefficient

Let T(i) the number of distinct triangles having node i as a
vertex

The maximum number of possible connections in the
neighborhood of i is ki(ki-1)/2

The local clustering coefficient of i is:

The clustering coefficient is:

A different (and better) definition exists:

Ci =
ki
2()−1T (i) = 2T (i)

ki (ki −1)

C = 1
n

Ci
i∈V
∑

C =
number of closed paths of length 2()

number of paths of length 2() =
number of triangles()× 3

number of connected triples()

nx.average_clustering

Local Clustering
Coefficient

Let T(i) the number of distinct triangles having node i as a
vertex

The maximum number of possible connections in the
neighborhood of i is ki(ki-1)/2

The local clustering coefficient of i is:

The clustering coefficient is:

A different (and better) definition exists:

Ci =
ki
2()−1T (i) = 2T (i)

ki (ki −1)

C = 1
n

Ci
i∈V
∑

C =
number of closed paths of length 2()

number of paths of length 2() =
number of triangles()× 3

number of connected triples()

nx.transitivity

Local Clustering
Coefficient

Let T(i) the number of distinct triangles having node i as a
vertex

The maximum number of possible connections in the
neighborhood of i is ki(ki-1)/2

The local clustering coefficient of i is:

The clustering coefficient is:

A different (and better) definition exists:

Ci =
ki
2()−1T (i) = 2T (i)

ki (ki −1)

C = 1
n

Ci
i∈V
∑

C =
number of closed paths of length 2()

number of paths of length 2() =
number of triangles()× 3

number of connected triples()

Degree Distribution

Degree distribution: frequency of the degrees of
the nodes

Most social networks have right-skewed degree
distributions

Most nodes have low degree, some have
exceptionally high degree

Keep in mind when sampling

node based sampling

edge based sampling

Power-Laws

General form of a power-law degree distribution

Graphs with power law degree distribution are
called scale-free

Not all moments are defined!

ln pk = −α ln k + c

pk = Ck
−α

pk / p ′k = p2k / p2 ′k

E[xn] = xn p(x)dx =∫
= xn−α dx∫

Random Graphs

An Erdös-Rényi random graph model G(n, m) is a
probability distribution over the set of simple
graphs with n nodes and m edges

A mathematically equivalent model (for large n)
is G(n, p). When a graph is drawn from G(n, p)
each possible edge is independently placed with
probability p

Other than the naive ways to code the process,
there are efficient O(n+m) algorithms
(implemented in networkx)

Random Graphs

ER-Random Graphs

It is unsurprising that ER-random graphs are not
good models for social networks (though studies
on a high school romance network shows
striking similarities with ER-random graphs

C = k n −1()
k = 1− p()n

pk  e
−c k k

k !

Average degree:

Clustering coefficient:

Degree distribution:

Diameter in the order of log n

Social Networks and
Random Graphs

Social Networks have short characteristic path
length (in the order of log n)

Social Networks have high clustering coefficient
(wrt. Random Graphs with comparable number
of nodes and average degree)

Social Networks have right skewed degree
distributions

Generative approach?

Real World Examples
Real Online Social Networks

OSN Users Links �ki� C CPL γ assort.

Club Nexus 1 2.5 K 10 K 8.2 0.17 4 - -

Cyworld 2 12 M 191 M 31.6 0.16 3.2 4; 1 -0.13

Cyworld T. 2 92 K 0.7 M 15.3 0.32 7.2 - 0.43

Orkut 2 100 K 1.5 M 30.2 0.30 3.8 3.7 0.31

Orkut 3 3 M 223 M 106 0.17 4.2 1.50 0.07

Flickr 3 1,8 M 22 M 12.2 0.31 5.7 1.7 0.20

Live Journal 3 5 M 77 M 17 0.33 5.9 1.6 0.18

Youtube 3 1,1 M 5 M 4.29 0.14 5.1 ∼ 2 -0.03

� blue bold: more than 90% of nodes analysed

� black: less than 90%, more than 1% of nodes analysed

� red italic: < 1% of nodes analysed

1
[Adamic 05]

2
[Ahn 07]

3
[Mislove 07]

Bergenti, Franchi, Poggi (Univ. Parma) Models for Agent-based Simulation of SN SNAMAS ’11 8 / 19

Group Level Properties

Identification of cohesive sub-groups

one-mode networks
(n-clique, n-clan, n-club, k-plex, k-core, LS set)

two-mode networks

Network Positions

Blockmodels

Networkx gives them all!

Efficiency, interpretation

Group Level Properties

Identification of cohesive sub-groups

one-mode networks
(n-clique, n-clan, n-club, k-plex, k-core, LS set)

two-mode networks

Network Positions

Blockmodels

Networkx gives them all!

Efficiency, interpretation

Highly connected core

Fringe

Stars & Isolated Nodes

Node level properties

“Centrality” metrics

Ranking

Study distribution & correlation

Betweenness centrality

Let Pi(k,j) be the number of shortest paths
between k and j that i lies on

Let P(k,j) the total number of shortest paths
between k and j

If Pi(k,j)P(k,j)-1≅1, then i lies on most shortest
paths between k and j

The betweenness centrality of a node i is:

ci
B =

n −1
2

⎛
⎝⎜

⎞
⎠⎟

−1
Pi (k, j)
P(k, j)k≠ j

i /∈{k , j}

∑

def attack(graph, centrality_metric):
 graph = graph.copy()
 steps = 0
 ranks = centrality_metric(graph)
 nodes = sorted(graph.nodes(), key=lambda n: ranks[n])

 while nx.is_connected(graph):
 graph.remove_node(nodes.pop())
 steps += 1
 else:
 return steps

Creating	
 powerlaw	
 cluster	
 with	
 1000	
 elements.
Creating	
 G(1000,0.007964)
Starting	
 attacks.
Social	
 network	
 broke	
 after	
 220	
 steps	
 with	
 random	

attack.
Random	
 network	
 broke	
 after	
 10	
 steps	
 with	
 random	

attack.
Social	
 network	
 broke	
 after	
 22	
 steps	
 with	
 betweenness	

ranking.
Random	
 network	
 broke	
 after	
 157	
 steps	
 with	
 betweenness	

ranking.
Social	
 network	
 broke	
 after	
 19	
 steps	
 with	
 pagerank.
Random	
 network	
 broke	
 after	
 149	
 steps	
 with	
 pagerank.
Social	
 network	
 broke	
 after	
 19	
 steps	
 with	
 degree.
Random	
 network	
 broke	
 after	
 265	
 steps	
 with	
 degree.

Visualization

Visualization

Networkx

Matplotlib

PyGraphViz

Pydot

Gephi

Guess

Protovis

Force directed algorithms

Energy minimization

Fixed layouts (circle)

Different colors on nodes

Dynamic Manipulation

?

nx.draw_graphviz(g, node_size=nx.degree(g).values(), with_labels=False,
 node_color=nx.betweenness_centrality(g).values(),
 edge_color='grey')

import json
from random import randint
import networkx as nx

graph = nx.powerlaw_cluster_graph(1000, 4, 0.05)
dict_of_lists = nx.to_dict_of_lists(graph)

nodes = [dict(nodeName=str(node), group=randint(1, 100))
 for node in dict_of_lists.iterkeys()]
edges = []
for node, neighbors in dict_of_lists.iteritems():
 for neighbor in neighbors:
 edges.append(
 dict(source=node, target=neighbor, value=1)
)
 edges.append(
 dict(target=node, source=neighbor, value=1)
)
json_like_structure = dict(nodes=nodes, links=edges)
with open('social_network.js', 'w') as fp:
 json.dump(json_like_structure, fp)

Protovis

var vis = new pv.Panel()
 .width(693)
 .height(693)
 .top(90)
 .left(90);

var layout = vis.add(pv.Layout.Matrix)
 .nodes(network.nodes)
 .links(network.links)
 .sort(function(a, b) b.group - a.group);

layout.link.add(pv.Bar)
 .fillStyle(function(l) l.linkValue
 ? ((l.targetNode.group == l.sourceNode.group)
 ? color(l.sourceNode) : "#555") : "#eee")
 .antialias(false)
 .lineWidth(1);

layout.label.add(pv.Label)
 .textStyle(color);

vis.render();

Protovis

var vis = new pv.Panel()
 .width(w)
 .height(h)
 .fillStyle("white")
 .event("mousedown", pv.Behavior.pan())
 .event("mousewheel", pv.Behavior.zoom());

var force = vis.add(pv.Layout.Force)
 .nodes(network.nodes)
 .links(network.links);

force.link.add(pv.Line);

force.node.add(pv.Dot)
 .size(function(d) (d.linkDegree + 4) * Math.pow
(this.scale, -1.5))
 .fillStyle(function(d) d.fix ? "brown" : colors
(d.group))
 .strokeStyle(function() this.fillStyle().darker())
 .lineWidth(1)
 .title(function(d) d.nodeName)
 .event("mousedown", pv.Behavior.drag())
 .event("drag", force);

vis.render();

Protovis

Thanks for
your

Kind Attention
Enrico Franchi (efranchi@ce.unipr.it)

https://gist.github.com/1010039

mailto:efranchi@ce.unipr.it
mailto:efranchi@ce.unipr.it
https://gist.github.com/1010039
https://gist.github.com/1010039

PageRank

Page Rank

Being cited by an (important) page which collects
links is not the same than being cited by a page
“on the same subject”

Important pages are cited more often

xi = Aji

x j
k jj

∑

Page Rank

In order to simplify the notation, we define the H
matrix:

We can try to compute with successive
approximations, like in with t→∞
Each iteration takes O(n2) operations

the number of non-zero entries is O(n), which
makes the computation O(n)

Convergence?

Hij = Aijk j
−1

xH = x
x(t) = x(0)Ht

Interpretation of
Page Rank

Random Surfer

If time spent surfing approximates infinity, time
spent on a given page is a measure of that page
importance

Dangling Nodes

Perron-Froebenius
Theorem

If T is a nonnegative row-stochastic matrix (i.e.,
the entries in each row sum to 1), there is a non
negative eigenvector v such that
and has a corresponding eigenvalue λ=1

If Tt has all positive entries for some t (i.e., T is
primitive), then all other eigenvalues have
magnitude less than 1

A matrix is primitive if it has only one eigenvalue
on the spectral circle

vT = λv

Primitivity Adjustment

The H matrix has almost all the right properties.
Dangling nodes make it non-stochastic (we say
it’s quasi-stochastic)

With the random walker intuition, we can fix
everything

where a is the dangling node vector (ai=1 if i is a
dangling node)

S = H + a 1
n
eT⎛

⎝⎜
⎞
⎠⎟

Markov Chains
interpretation

S is the matrix of a Markov process

It is stochastic, irreducible (equivalent to say that
the corresponding graph is strongly connected)
and aperiodic

aperiodic + irreducible → primitive

From a mathematical point of view, everything is
fine. However, we are implying that surfers never
“jump” to entirely new pages

The Google Matrix

Let α be a scalar between 0 and 1

G is stochastic, because the convex combination
of two stochastic matrices is stochastic

G is irreducible (every page is connected with
every other page)

G is aperiodic

G is (unfortunately) dense

G = αS +(1−α) ee
T

n

Computing the PageRank

We could see the computation as:

an eigenvector problem:

G = αS +(1−α)1 n eeT

= α(H +1 naeT) +(1−α)1 n eeT

= αH + (αa +(1−α)e)1 n eT

xT = xTG
xT e = 1

solution of linear hom. system

xT (I −G) = 0T

xT e = 1

The Power-Method

The power method is usually slow, but has lots of
nice properties:

is matrix-free (matrix is only accessed, not
manipulated)

the matrix is easy to distribute, since its sparse

x(k+1)T = x(k)TG
= αx(k)TS +(1−α)1 nx(k)T eeT

= αx(k)T (H +1 naeT) +(1−α)1 nx(k)T eeT

= αx(k)TH + (αx(k)Ta +(1−α))eT n

Personalization vector

Instead of assuming a random probability to jump
on any page, we consider an “personalized
probability”

x(k+1)T = x(k)TGv

= αx(k)TSv +(1−α)x
(k)T evT

= αx(k)T (H +avT) +(1−α)x(k)T evT

= αx(k)TH + (αx(k)Ta +(1−α))vT

... in Python

Use networkx

nx.pagerank

nx.pagerank_numpy

nx.pagerank_scipy

