
www.2ndQuadrant.com

Writing a parallel and distributed 
tool for backing up a

multi-terabyte data warehouse

Marco Nenciarini
<marco@2ndQuadrant.com>
http://www.2ndQuadrant.com/



www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

License

• Creative Commons:
– Attribution-NonCommercial-ShareAlike 3.0
– You are free:

• to Share — to copy, distribute and transmit the work
• to Remix — to adapt the work

– Under the following conditions:
• Attribution: You must attribute the work in the manner specified 

by the author or licensor
• Non-Commercial: You may not use this work for commercial 

purposes
• Share Alike: If you alter, transform, or build upon this work, you 

may distribute the resulting work only under the same or similar 
license to this one

Source: http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/
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About me

• Linux system administrator for over 10 years
• Debian developer since 2001
• Co-founder of Italian PostgreSQL Users Group (ITPUG)
• PostgreSQL Consultant @ 2ndQuadrant.com
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Greenplum Database

• Fork of PostgreSQL (based on 8.2)
• MPP = Massively Parallel Processing

– Multiple units of parallelism working on the same task
• Parallel Database Operations
• Parallel CPU Processing

– Greenplum Units of Parallelism are “Segments” 

• “Shared Nothing” Architecture
– Segments only operate on their portion of the data
– Segments are self-sufficient

• Dedicated CPU Processes
• Dedicated storage that is only accessible by the segment

• MapReduce implementation for non structured analysis
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Greenplum Database
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EMC/Greenplum

• In 2010 EMC Corporation acquired Greenplum
• Free Community Edition

– Research and Development
– Data Scientist
– Commercial use (Single node, limits on number of CPUs)
– More information at http://community.greenplum.com

http://community.greenplum.com/
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Context

• Backup of a Greenplum powered data warehouse
• Very large customer
• About 100 TB of data

– Increasing every day

• Over 10k tables
• Many hosts involved

– One master
– Multiple segments (on multiple hosts)
– Multiple backup servers

• Each host has multiple NICs
– Multiple networks
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The problem and its main requirements

• Daily full logical backup
– Manage tables individually
– Incremental

• High performance
– Backup operation
– Restore operation

• Scalable
• Backup metadata database (in PostgreSQL)

– Monitoring and analysis
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Main issue

• Lots of data
• 100TBs per day or:

– ~ 9.7Gb/s

• or, if you prefer:
– ~ 1 DVD every 4 sec
– ~ 10 Gigabit eth links

• Fortunately:
– GP compresses data
– Just 1 DVD every 8 

seconds!
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Our idea

• 24-hour time constraint
• Parallel and distributed operations:

– Maximise hardware resources usage:

• CPU
• Disk
• Network
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A new project arises

• Codename: “Greenback”
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Greenback's architecture

• One centralised master daemon (Manager)
• One distributed agent per Greenplum node
• Peer-to-Peer transfer between Greenplum nodes and 

backup servers
• Command line utility to interact with the Manager
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Greenback's architecture overview
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Python

• Possible candidate languages for the implementation:
– Shell scripting
– Java
– C++
– Python

• The final choice was Python:
– Extensive and powerful standard library

• Networking
• Parallel processing (thread/process)
• System utilities

– Fast prototyping and deployment
– Rapid Application Development
– …
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Python requirements

• Python 2.4 only on 
backup servers
– No additional modules

• Python 2.6 on nodes 
(shipped with Greenplum)
– Only a few modules are 

available (paramiko, 
pg8000)

• Python 2.6 on the Master
– Same modules as the nodes
– Psycopg2 available!
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Greenback Node Agents

• PYthon Remote Objects (PYRO)
– Written in 100% pure Python
– Small, simple and extremely portable
– Runs wherever Python runs

• Requires TCP/IP networking

– Dynamic Proxies - no need for additional tools or classes
– Transparent remote attribute access

• Dual status reporting
– Logging and status update in the Postgres database
– Callbacks to the master through PYRO
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Greenback Node Agents

• PYthon Remote Objects (PYRO)
– Written in 100% pure Python
– Small, simple and extremely portable
– Runs wherever Python runs

• Requires TCP/IP networking

– Dynamic Proxies - no need for additional tools or classes
– Transparent remote attribute access

• Dual status reporting
– Logging and status update in the Postgres database
– Callbacks to the master through PYRO

• Self deployment via SSH and tarfile module
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Greenback v1.0alpha

• First attempt of parallel backup
• File transfer through multiple SFTP channels (SSH)

– Paramiko

• No requirement whatsoever on the backup nodes
– Apart from SSH   :-)
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It did not quite work ...
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Greenback v1.0alpha failure

• Encryption overhead
– Not necessary in an extremely secure local network

• We assume that a security breach in Greenback communications 
would be the last of the client's concerns …

• Paramiko's performance issues with Python shipped 
with Greenplum (requirement)
– Paramiko is a great library, but its main goal is not extreme 

performance
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Peer-to-Peer server for backup

• Runs on backup nodes
• Uses the Standard Python Library

– SocketServer.TCPServer with ThreadingMixIn
• Random port
• Simple authentication using a security token
• No data encryption (CPU intensive)
• Very simple protocol

– Needs to be extremely fast (remember the 1 day constraint!)

• No need to install the application on backup nodes
– Launch Python via ssh
– Load all the required modules from stdin
– Launch and control the remote server
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Sending the code remotely 1/2
    pack = StringIO()

    for module in manifest:

        if os.sep in module:

            dir = os.path.dirname(module)

            while dir != '' and dir != os.sep:

                parent = os.path.join(dir , '__init__.py')

                if parent not in manifest:

                    try:

                        data = bundle(parent)

                    except:

                        break

                    else:

                        pack.write(data)

                dir = os.path.dirname(dir)

        pack.write(bundle(module))

    pack.write('%s\n' % main)
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Sending the code remotely 2/2
...

    remote_code = 'import sys; exec compile(sys.stdin.read(%d),

                                                    "bootstrap.py", "exec")' % len(bootstrap_code)

    if not host:

        argv = [python, '-c', remote_code]

    else:

        cmd = "%s -c '%s'" % (python, remote_code)

        argv = ['ssh', host, '--', cmd]

    p = subprocess.Popen(argv, stdin=subprocess.PIPE, stdout=subprocess.PIPE, 
stderr=subprocess.PIPE, close_fds=True)

    p.stdin.write(bootstrap_code)

    p.stdin.write(pack.getvalue())

    p.stdin.flush()

...
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The boostrap code
    while True:

        name = sys.stdin.readline().strip()

        if name.endswith('.py'):

            len = int(sys.stdin.readline())

            data = zlib.decompress(sys.stdin.read(len))

            modname = name[:-3].replace(os.sep,'.')

            if modname.endswith('.__init__'):

                modname, _ = modname.rsplit('.', 1)

            mod = types.ModuleType(modname)

            exec compile(data, name, "exec") in mod.__dict__

            sys.modules[modname] = mod

        else:

            break
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It could work!
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Greenback v1.1alpha

• It is our current version
• Saturation of the available bandwidth
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Conclusions

• Greenback is an under development project
• As of today we are able to meet the full backup 

requirements
• Next step will be focused on:

– Incremental backup and backup management
– Restore operations

• We are thinking of porting the application to PL/Proxy 
distributed databases in PostgreSQL

• Confidence: Python will help us achieve these goals
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Questions?
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Thank you

• You can contact Marco Nenciarini via email at 
marco@2ndQuadrant.com

• For more information on our professional services on 
PostgreSQL and Greenplum, visit our website 
http://www.2ndQuadrant.com/

• See you next year!

http://www.2ndQuadrant.com/
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