
www.2ndQuadrant.com

Writing a parallel and distributed
tool for backing up a

multi-terabyte data warehouse

Marco Nenciarini
<marco@2ndQuadrant.com>
http://www.2ndQuadrant.com/

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

License

• Creative Commons:
– Attribution-NonCommercial-ShareAlike 3.0
– You are free:

• to Share — to copy, distribute and transmit the work
• to Remix — to adapt the work

– Under the following conditions:
• Attribution: You must attribute the work in the manner specified

by the author or licensor
• Non-Commercial: You may not use this work for commercial

purposes
• Share Alike: If you alter, transform, or build upon this work, you

may distribute the resulting work only under the same or similar
license to this one

Source: http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

About me

• Linux system administrator for over 10 years
• Debian developer since 2001
• Co-founder of Italian PostgreSQL Users Group (ITPUG)
• PostgreSQL Consultant @ 2ndQuadrant.com

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Table of contents

• Prologue: What is Greenplum?
• The context
• The problem
• Our solution
• Why python
• Failures and successes
• Conclusions

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Greenplum Database

• Fork of PostgreSQL (based on 8.2)
• MPP = Massively Parallel Processing

– Multiple units of parallelism working on the same task
• Parallel Database Operations
• Parallel CPU Processing

– Greenplum Units of Parallelism are “Segments”

• “Shared Nothing” Architecture
– Segments only operate on their portion of the data
– Segments are self-sufficient

• Dedicated CPU Processes
• Dedicated storage that is only accessible by the segment

• MapReduce implementation for non structured analysis

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Greenplum Database

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

EMC/Greenplum

• In 2010 EMC Corporation acquired Greenplum
• Free Community Edition

– Research and Development
– Data Scientist
– Commercial use (Single node, limits on number of CPUs)
– More information at http://community.greenplum.com

http://community.greenplum.com/

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Context

• Backup of a Greenplum powered data warehouse
• Very large customer
• About 100 TB of data

– Increasing every day

• Over 10k tables
• Many hosts involved

– One master
– Multiple segments (on multiple hosts)
– Multiple backup servers

• Each host has multiple NICs
– Multiple networks

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

The problem and its main requirements

• Daily full logical backup
– Manage tables individually
– Incremental

• High performance
– Backup operation
– Restore operation

• Scalable
• Backup metadata database (in PostgreSQL)

– Monitoring and analysis

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Main issue

• Lots of data
• 100TBs per day or:

– ~ 9.7Gb/s

• or, if you prefer:
– ~ 1 DVD every 4 sec
– ~ 10 Gigabit eth links

• Fortunately:
– GP compresses data
– Just 1 DVD every 8

seconds!

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Our idea

• 24-hour time constraint
• Parallel and distributed operations:

– Maximise hardware resources usage:

• CPU
• Disk
• Network

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

A new project arises

• Codename: “Greenback”

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Greenback's architecture

• One centralised master daemon (Manager)
• One distributed agent per Greenplum node
• Peer-to-Peer transfer between Greenplum nodes and

backup servers
• Command line utility to interact with the Manager

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Greenback's architecture overview

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Python

• Possible candidate languages for the implementation:
– Shell scripting
– Java
– C++
– Python

• The final choice was Python:
– Extensive and powerful standard library

• Networking
• Parallel processing (thread/process)
• System utilities

– Fast prototyping and deployment
– Rapid Application Development
– …

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Python requirements

• Python 2.4 only on
backup servers
– No additional modules

• Python 2.6 on nodes
(shipped with Greenplum)
– Only a few modules are

available (paramiko,
pg8000)

• Python 2.6 on the Master
– Same modules as the nodes
– Psycopg2 available!

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Greenback Node Agents

• PYthon Remote Objects (PYRO)
– Written in 100% pure Python
– Small, simple and extremely portable
– Runs wherever Python runs

• Requires TCP/IP networking

– Dynamic Proxies - no need for additional tools or classes
– Transparent remote attribute access

• Dual status reporting
– Logging and status update in the Postgres database
– Callbacks to the master through PYRO

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Greenback Node Agents

• PYthon Remote Objects (PYRO)
– Written in 100% pure Python
– Small, simple and extremely portable
– Runs wherever Python runs

• Requires TCP/IP networking

– Dynamic Proxies - no need for additional tools or classes
– Transparent remote attribute access

• Dual status reporting
– Logging and status update in the Postgres database
– Callbacks to the master through PYRO

• Self deployment via SSH and tarfile module

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Greenback v1.0alpha

• First attempt of parallel backup
• File transfer through multiple SFTP channels (SSH)

– Paramiko

• No requirement whatsoever on the backup nodes
– Apart from SSH :-)

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

It did not quite work ...

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Greenback v1.0alpha failure

• Encryption overhead
– Not necessary in an extremely secure local network

• We assume that a security breach in Greenback communications
would be the last of the client's concerns …

• Paramiko's performance issues with Python shipped
with Greenplum (requirement)
– Paramiko is a great library, but its main goal is not extreme

performance

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Peer-to-Peer server for backup

• Runs on backup nodes
• Uses the Standard Python Library

– SocketServer.TCPServer with ThreadingMixIn
• Random port
• Simple authentication using a security token
• No data encryption (CPU intensive)
• Very simple protocol

– Needs to be extremely fast (remember the 1 day constraint!)

• No need to install the application on backup nodes
– Launch Python via ssh
– Load all the required modules from stdin
– Launch and control the remote server

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Sending the code remotely 1/2
 pack = StringIO()

 for module in manifest:

 if os.sep in module:

 dir = os.path.dirname(module)

 while dir != '' and dir != os.sep:

 parent = os.path.join(dir , '__init__.py')

 if parent not in manifest:

 try:

 data = bundle(parent)

 except:

 break

 else:

 pack.write(data)

 dir = os.path.dirname(dir)

 pack.write(bundle(module))

 pack.write('%s\n' % main)

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Sending the code remotely 2/2
...

 remote_code = 'import sys; exec compile(sys.stdin.read(%d),

 "bootstrap.py", "exec")' % len(bootstrap_code)

 if not host:

 argv = [python, '-c', remote_code]

 else:

 cmd = "%s -c '%s'" % (python, remote_code)

 argv = ['ssh', host, '--', cmd]

 p = subprocess.Popen(argv, stdin=subprocess.PIPE, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, close_fds=True)

 p.stdin.write(bootstrap_code)

 p.stdin.write(pack.getvalue())

 p.stdin.flush()

...

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

The boostrap code
 while True:

 name = sys.stdin.readline().strip()

 if name.endswith('.py'):

 len = int(sys.stdin.readline())

 data = zlib.decompress(sys.stdin.read(len))

 modname = name[:-3].replace(os.sep,'.')

 if modname.endswith('.__init__'):

 modname, _ = modname.rsplit('.', 1)

 mod = types.ModuleType(modname)

 exec compile(data, name, "exec") in mod.__dict__

 sys.modules[modname] = mod

 else:

 break

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

It could work!

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Greenback v1.1alpha

• It is our current version
• Saturation of the available bandwidth

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Conclusions

• Greenback is an under development project
• As of today we are able to meet the full backup

requirements
• Next step will be focused on:

– Incremental backup and backup management
– Restore operations

• We are thinking of porting the application to PL/Proxy
distributed databases in PostgreSQL

• Confidence: Python will help us achieve these goals

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Questions?

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Thank you

• You can contact Marco Nenciarini via email at
marco@2ndQuadrant.com

• For more information on our professional services on
PostgreSQL and Greenplum, visit our website
http://www.2ndQuadrant.com/

• See you next year!

http://www.2ndQuadrant.com/

	Presentation TITLE
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

