
1

Python 3: The Next
Generation

Wesley J. Chun
wescpy@gmail.com

@wescpy
http://corepython.com
EuroPython/PyCon IT

Firenze/Florence
Jun 2011

About the Speaker

Software engineer by profession
Currently at Google (cloud products)

Course instructor: teaching Python since 1998
Private Corporate Training & Public Courses

Community volunteer
User groups: BayPIGgies and SF Python Meetup
Other: Tutor mailing list; Python conferences

Author/co-author (books, articles, blog, etc.)
Core Python Programming ([2009,]2007, 2001)
Python Fundamentals LiveLessons DVD (2009)
Python Web Development with Django (2009)

2

I Teach

I Write

3

I Code

About You and This Talk

Assumes some Python knowledge/experience
Will not cover Python basics here

Today focused on Python 3
Differences between Python 2 and 3
Role of remaining Python 2.x releases
Timeline and Transitioning

4

Questions

What does it all mean?
Are all my Python programs going to break?
Will I have to rewrite everything?
How much time do I have?
When is Python 2 going to be EOL'd?
Is Python being rewritten completely and will I even
recognize it?
What are the changes between Python 2 and 3 anyway?
Are migration plans or transition tools available?
Should I start w/Python 2 or Python 3 if I want to learn
Python?
Are all Python 2 books obsolete?

Fact or Fiction? Rumors all TRUE...

Python 3 does exist
There are some users of Python 3
Most corporations still using Python 2
Some projects have been ported to Python 3
More projects have started porting to Python 3
I am not a Python 3 user (yet)

5

Python 2 and Python 3

Python stands at a crossroads
In transition to next generation

I (+courses & books) promote version-independence
All about language itself
Not focused on syntax differences

BUT
Cannot ignore 3.x backwards-incompatibility

Python 3: The What and the Why

Justifying the existence of 3.x
Fix early design flaws
Provide more universal data types
Clean up language and library
Some new features, many small improvements

Plan
Timeline: 2.x will live on for some time
2.x and 3.x developed in parallel
Migration tools (i.e., 2to3 , Python 2.6+)

More information in PEPs 3000 and 3100

6

3.x Not Backwards-Compatible

Is all my Python code going to break? YES
Do I have to rewrite everything? HOPEFULLY
NOT

Hopefully porting won't be grueling
Easy stuff easier, hard stuff harder

Causes (negative) buzz in industry
Won't execute most 1.x/2.x code
Will I even recognize Python?

General syntax: same flavor
Easily broken when print becomes a function (vs. stmt)

Stability Over the Years

Backwards-compatibility never really been an issue
Steadfast determination to preserve compatibility
In 2000, Python 2.0 ran 1.5.2 software just fine
2.0a released on same day as 1.6 (Why? ASFAT.)
2.6 developed at same time as 3.0 (Why? Wait.)
Cost: passes on "sticky" flaws & deprecated features

7

Python "Regrets" and "Warts"

Why is Python Changing?

Why isn't Python changing?
It usually doesn't!
Has always been backwards compatible
Python 3 still recognizable
Not being rewritten/redesigned from scratch

Not a standard (yet)
Backwards-incompatible for the future's sake
Must drop "sticky" flaws and deprecated features
Iterate, improve, evolve, etc.

8

Python 3 Breakage

1st release that deliberately breaks compatibility
No promise that it will not ever happen again
But it took 18 years for this first one to occur

"Backcompat" always top priority except this time
BTW, it's still a high priority

Python follows agile method of continuous iteration
Interpreter development follows methodology too
3.0 just a bit larger of a hop

Python 2 vs. 3: Key Differences

print & exec changed to functions
Strings: Unicode; bytes/bytearray types
True division
1/2 == 0.5

Updated Syntax for Exceptions
Iteration upgrades/Iterables Everywhere
Various Type Updates

One class type
Updates to integers
Cannot compare mixed types
New "construction"

Other Minor Changes
Fixes, Deprecation, Improvements

9

print : Statement to Function

Easiest way to slip up in Python 3
Especially in interactive interpreter
Need to get used to adding parentheses

Why the change?
As a statement, limits improvements to it

As a function...
Behavior can be overridden w/keyword parameters
New keyword parameters can be added
Can be replaced if desired, just like any other BIF*

More information in PEP 3105
(*) BIF = built-in function, FF = factory function

print in Python (1 and) 2

Using the "old" print
>>> i = 1
>>> print 'Python' 'is', 'number', i
Pythonis number 1

Using the "new" print in 2.6+
>>> from __future__ import print_function
>>> print
<built-in function print>
>>> print('foo', 'bar')
foo bar

10

print () in Python 3

Using the "new" print in 3.0+
>>> i = 1
>>> print('Python' 'is', 'number', i)
Pythonis number 1

(Deliberate exclusion of comma b/w 'Python' & 'is')

Strings: Unicode by Default

This change couldn't come soon enough
People have daily issues w/Unicode vs. ASCII
Does the following look familiar?

UnicodeEncodeError: 'ascii' codec can't
encode character u'\xae' in position 0:
ordinal not in range(128)

Results from non-ASCII characters in valid 8-bit strings
More Unicode info:
http://docs.python.org/3.0/howto/unicode.html

11

New String Model

Users shouldn't even use those terms any more
It's not Unicode vs. ASCII; it's text vs. data
Text represented by Unicode... real "strings"
Data refers to ASCII, bytes, 8-bit strings, binary data

Changes
str type now bytes (new b literal)
unicode type now str (no more u literal)
basestring deprecated (former base class)
New mutable bytesarray

More information in PEPs 358, 3112, 3137, 3138

Single Class Type

2.2: first step taken to unify classes & types
Since then, there have been 2 class types

Original classes called "classic classes"
Second generation classes called "new-style classes"
Python 3 deprecates classic classes

They no longer exist
All classes are of the same type

More information in PEPs 252 and 253

12

Classic Classes

"Normal" classes in typical OOP languages
Classes: types
Instances: objects of those types

Problem: Python classic classes not normal
Classes: "class objects"
Instances: "instance objects"

Existing Python types can't be subclassed (not classes!)
Common programmer desire to modify existing types
Handicapped versions of certain types had to be created

UserList , UserDict , etc.

Classic vs. New-style classes

Syntactically, difference is object
class ClassicClass:

pass

vs
class NewStyleClass(object):

pass

In Python 3, both idioms create same class type

13

Updated Syntax for Exceptions

In Python (1 and) 2, multiple idioms...
For raising exceptions
For handling exceptions

In Python 3, syntax...
Improved, consolidated, less confusing

More information in PEP 3109 and 3110

Exception Handling

Catching/Handling One Exception
except ValueError, e:

Catching/Handling Multiple Exceptions
except (ValueError, TypeError), e:

e : exception instance usually has error string
Mistakes easily made as parentheses required!!

Developers attempt the invalid:
except ValueError, TypeError, e:

Code does not compile (SyntaxError)

14

Improving Handling Mechanism

(New) as keyword helps avoid confusion
Parentheses still required
Equivalents to earlier except statements:
except ValueError as e:
except (ValueError, TypeError) as e:

Required in 3.0+
Available in 2.6+ as transition tool

Yes, 2.6+ accepts both idioms

More information in PEP 3110

Consolidated Exception
Throwing/Raising

How do I say this?
Python has more than one way to throw exceptions

12(!) actually if you're counting
The most popular over the years:
raise ValueError:
raise ValueError, e:

Remember:
"There should be one -- and preferably only one --
obvious way to do it."
From the Zen of Python (`import this`)

15

New Idiom with Exception Classes

Exceptions used to be strings
Changed to classes in 1.5
Enabled these new ones:
raise ValueError()
raise ValueError(e)

Required in 3.0+
Available in 1.5+ as transition tool :-)
(Changed to new-style classes in 2.5)

*Updates to Integers

Major
Unification of two integer types

Old long type deprecated

Changing the division operator (/)
Plus new division operator [//]

Minor
New binary literals
Updated octal literals

16

Single Integer Type

The past: two different integer types
int -- unsigned 32- (or 64-bit) integers

Had OverflowError

long -- unlimited in size except for VM
L or l designation for differentiation

Starting in 2.2, both unified into single integer type
No overflow issues and still unlimited in size
L or l syntax deprecated in 3.0

More information in PEP 237

Changing the Division Operator (/)

Executive summary
Doesn't give expected answer for new programmers
Changed so that it does

Terminology
Classic Division
Floor Division
True Division

Controversy with this change:
Programmers used to floor division for integers

17

Classic Division

Default 2.x division symbol (/) operation
int operands: floor division (truncates fraction)
One `float`: / performs float/"true" division

Result: float even if one operand an int
int "coerced" to other's type before operation

Classic division operation
>>> 1 / 2
0
>>> 1.0 / 2
0.5

True Division

Default 3.x division symbol (/) operation
Always perform real division, returning a float
Easier to explain to new programmer or child...

...why one divide by two is a half rather than zero

True division operation
>>> 1 / 2
0.5
>>> 1.0 / 2
0.5

18

Floor Division

"New" division operator (//)... added in Python 2.2
Always floor division regardless of operand types
Floor division operation
>>> 1 // 2
0
>>> 1.0 // 2
0.0
>>> -1 // 2
-1

Accessing True Division

To use true division in Python 2.2+:
from __future__ import division

True division default starting with 3.0
Division -Q option

old -- always classic division
new -- always true division
warn -- warn on int/int division
warnall -- warn on all division operations

More information in PEP 238

19

Update to Integer Literals

Inspired by existing hexadecimal format
Values prefixed with leading 0x (or 0X)

0x80, 0xffff, 0XDEADBEEF...

Modified octal literals
New binary literals
Required in 3.0+
Available in 2.6+ as transition tool
More information in PEP 3127

New Binary Literals

New integer literal format
Never existing in any previous version
Ruins some existing exercises :P

Values prefixed with leading 0b
0b0110

New corresponding BIF bin
Modified corresponding BIFs oct & hex

20

Modified Octal Literals

"Old" octal representation
Values prefixed with leading single 0
Confusing to some users, especially new programmers

Modified with an additional "o"
Values prefixed with leading 0o
Python (1.x and) 2.x: 0177
Python 2.6+ and 3.x: 0o177
Modified corresponding BIFs oct & hex

Python 2.6+ Accepts Them All

>>> 0177
127
>>> 0o177
127
>>> 0b0110
6
>>> oct(87)
'0127'
>>> from future_builtins import *
>>> oct(87)
'0o127'

21

Iterables Everywhere

Another 3.x theme: memory-conservation
Iterators much more efficient

Vs. having entire data structures in memory
Especially objects created solely for iteration
No need to waste memory when it's not necessary

Dictionary methods
BIF (Built-in Function) replacements

Dictionary Methods

dict.keys , dict.items , dict.values
Return lists in Python (1 and) 2

dict.iterkeys , dict.iteritems ,
dict.itervalues

Iterable equivalents replace originals in Python 3
iter * names are deprecated

If you really want a list of keys for d :
listofkeys = list(d)

If you really want a sorted list of keys for d :
sortedkeys = sorted(d)

More information in PEP 3106

22

Updates to Built-Ins

Changes similar to dictionary method updates
Built-ins returning lists in 2.x return iterators in 3.x

map , filter , xrange , zip

Other built-ins: new, changed, moved, or removed
In addition to iteration changes above
reduce moves to functools module
raw_input replaces and becomes input
More information in PEP 3111

* map and filter Replacements

itertools.imap replaces & becomes map
itertools.ifilter replaces & becomes
filter

Both semi-deprecated by new Python features
List comprehensions (2.0) or generator expressions (2.4)
Where you need a list, can use a "listcomp"
For memory-efficiency, use a "genexp" instead

23

*Other 3.x Iteration Replacements

xrange
xrange replaces & becomes range

zip
itertools.izip replaces & becomes zip

file.xreadlines
xreadlines method replaces and becomes
readlines
file gone too

*3.x Type Updates

Integers
(Already discussed)

Files
New io classes replace file object
More information in PEP 3116

Dictionaries
(Method changes already discussed)
New dictionary comprehensions "dictcomps"

Sets
New set comprehensions "setcomps"

Tuples
Methods for the first time ever

24

Dictionary Comprehensions

Inspired by dict () call passing in 2-tuples
Builds dict w/1st & 2nd tuple elements as key & value,
resp.

Now can use the equivalent but more flexible
{k: v for k, v in two_tuples}

Example
>>> {k: v*2 for k, v in zip(range(5),
range(-4, 1))}

{0: -8, 1: -6, 2: -4, 3: -2, 4: 0}

Sets

Set Literals
{1, 10, 100, 1000}

Reflects similarity/relationship sets have with dict s
{ } still represents an empty dict
Must still use set FF/BIF to create an empty set

Set Comprehensions
Follow listcomp, genexp, and dictcomp syntax

>>> {10 ** i for i in range(5)}
{1000, 1, 10, 100, 10000}

Reminder: dict s and set s unordered (hashes)

25

Tuple Methods

For the first time ever, tuples will now have methods
Specifically count and index
More convenient alternative to duplicating to a list

Just to find out how many times an object appears in it
Where it is in the list if it appears at all

Logical since read-only ops on an immutable data
type

*Other Minor Changes

Reserved Words
Built-ins (functions and methods)
Operators
Types
Modules/Packages

26

Reserved Words

Includes statements, constants, keywords
Added

as , with , nonlocal , True , False

Removed
print , exec

*Built-Ins

Functions & methods, but not factory functions
BIFs

Added: ascii , bin , exec , memoryview , next , print
Moved: reduce
Removed: apply , callable , cmp , coerce , execfile ,
intern , raw_input , reduce , reload , unichr , xrange
Replaced: map , filter , hex , input , oct , range , zip

BIMs
Added: New string and tuple methods
Replaced: Altered dict methods and file object (+methods)
replaced by io classes (+methods)

27

*Operator and Type Changes

Operators
Removed

<> , ` `

Types/Factory Functions
Added

bytes , bytearray , range

Removed
basestring , buffer , file , long , unicode , xrange

*Modules/Packages

Added
abc , ast , fractions , future_builtins , io , json ,
multiprocessing , numbers , plistlib , ssl

Removed
bsddb (dbm.bsd) , sunaudio (use sunau instead) , rfc822 , mimetools ,
htmllib , sgmllib , commands (some code moved to subprocess),
statvfs , multifile , sre , mhlib , ihooks , fpformat , dircache ,
Canvas , user , mutex , imputil , cPickle

Replaced
urllib (package) replaces urllib , urllib2 , urlparse , robotparser
http (package) replaces httplib , Cookie , cookielib , `*HTTPServer`
xmlrpc (package) replaces xmlrpclib , SimpleXMLRPCServer ,
DocXMLRPCServer
dbm (package) replaces anydbm , whichdb , gdbm , dbhash , dbm , dumbdbm

28

*Migrating to Python 3

Are migration plans or transition tools available?
YES
Develop a transition plan
Wait for dependencies to port
Develop a comprehensive test suite
Follow granular migration steps
Use migration tools

Recommended Transition Plan

From "What's New in Python 3.0" document (see above)
Wait for your dependencies to port to Python 3

Pointless to start before this except as exercise
Start w/excellent coverage: ensure solid test suites
Port to latest Python 2.x (2.6+)
Use -3 command-line switch (warns against incompats)
Run 2to3 tool
Make final fixes and ensure all tests pass
How much time do I have? LOTS
When is Python 2 going to be EOL'd? "COUPLE OF
YEARS"

29

*Migration Steps

Port to latest Python 2.x (2.6+)
Same level of difficulty as a Python X.Y to X.Y+1 port
Make sure all tests pass

Use 2.6+'s -3 command line switch
Enable warnings for features removed/changed in 3.x
Run test suite again
Fix code until no warnings left and all tests pass

Run 2to3 source translator over codebase
Check resulting Python 3 versions of app & test files
Run Python 3 test suites followed by application

Make final fixes and ensure all tests pass

*The -3 switch

Warn about Python 3.x incompatibilities, including:
dict.has_key
apply
callable
coerce
execfile
reduce
reload

30

2to3 Tool

Examples of what it does
Changes backtick-quoted strings ` ` to repr
Converts print statement to function
Removes L long suffix
Replaces <> with !=
Changes callable (obj) to hasattr (obj, '__call__')

Not a crystal ball... what it doesn't do
Stop using obsolete modules
Start using new modules
Start using class decorators
Start using iterators and generators

http://docs.python.org/3.0/library/2to3.html

3to2 Tool

Refactors valid 3.x syntax to 2.x (if possible)
http://www.startcodon.com/wordpress/?cat=8
http://bitbucket.org/amentajo/lib3to2/
http://pypi.python.org/pypi/3to2
http://us.pycon.org/2010/conference/posters/acce
pted (P9)

31

Python 2.x

Python 2.x not EOL'd (yet)...
Quite the opposite
2.6: first w/backported 3.x features
2.6.x-2.7.x play significant role

2.x & 3.x developed in parallel
2.6 & 3.0 almost released at same time(!)
Keep 2.x alive for as long as it takes to migrate users

I call a decade (2008-2018)

3.x Features Available in 2.6+

New-style classes
True division
Changes to exception handling & raising idioms
No integer overflow, integer literal changes
bytes type and literals/strings (synonym for str)
Class decorators
Access to some 3.x BIF/BIM changes
Access to some new modules/packages

32

Non-Autocompat Features

Not all 3.x features backwards-portable to 2.x
Not all work in parallel w/original 2.x functionality
print must stay a statement

Must explicitly switch to BIF
from __future__ import print_function

Built-in functions w/new 3.x behavior must be
imported

ascii , filter , hex , map , oct , zip , etc.
Import from future_builtins module

Python 3 Status

Operating Systems (c=current, f=future,
e=experimental)

http://oswatershed.org/pkg/python3.0
Arch, Debian, Fedora, Gentoo, OpenSuSE, Ubuntu
Also IUS/Rackspace RHEL/CentOS 5

33

Number of Ports

Today: 456 in packages total (in PyPI) are 3.x
~450: Jun 2011
~350: Mar 2011
~300: Jan 2011
~225: Aug 2010
~125: Feb 2010
http://pypi.python.org/pypi?:action=browse&c=533&sh
ow=all

http://dev.pocoo.org/~gbrandl/py3
pkgs.png

34

Ported Packages

virtualenv, SQLAlchemy, Mako, NumPy, SciPy
(almost),
distribute, setuptools, bsddb (bsddb3), CherryPy,
coverage, cx_Oracle, Cython, docutils, gmpy, Jinja2,
lxml, Markdown, mod_wsgi, py-postgresql,
Pygments,
PyQt, pyserial, PyWin32, SWIG, ...

Port Tracking

http://py3ksupport.appspot.com
http://onpython3yet.com
http://python3wos.appspot.com

35

Porting Guides

http://techspot.zzzeek.org/2011/01/24/zzzeek-s-guide-to-
python-3-porting/
http://lucumr.pocoo.org/2010/2/11/porting-to-python-3-a-
guide/
http://docs.python.org/3.0/whatsnew/3.0.html
http://wiki.python.org/moin/PortingToPy3k
http://diveintopython3.org/porting-code-to-python-3-with-
2to3.html
http://peadrop.com/blog/2009/04/05/porting-your-code-
to-python-3/
http://www.linuxjournal.com/content/python-python-
python-aka-python-3

Futures

3.2.1 released yesterday, today, tomorrow?!?
2.7.x final 2.x release (now 2.7.2; last week)
Alex proposes Django on Python 3 possibility this
year
3.3 release schedule PEP 398

Estimated Aug 2012

36

Books and Learning Python

Have existing Python (2) code? Start _there_.
If not, start with Python 3
There are some Python 3 books, but...

They're probably obsolete, e.g., 3.0
Not really all that useful (yet)

Are all Python 2 books obsolete? Not yet
Easier to learn via Python 2 books/tutorials
Most online/in-print still in Python 2
Hybrid books coming soon...

Existing Python devs should port projects

Conclusion

Python 3: the language evolving
It (the future) is here (but 2.x is still here!)
Backwards-incompatible but not in earth-shattering ways
Improve, evolve, remove sticky flaws
Still a little rough around edges but usable

To ease transition
2.x sticking around for the near-term
2.6+ releases contain 3.x-backported features
Use -3 switch and migration tools

You will enjoy Python even more
But need to wait a little bit more to port

37

Some PyCon 2011 Talks FYI

Mastering Python 3 I/O, Dave Beazley
Tour of Python 3 I/O system

Cooking with Python 3, David Beazley & Brian K. Jones
Porting Python Cookbook recipes to Python 3

Using Python 3 to Build a Cloud Computing Service for my
SB II, Dave Beazley

Ancient HW meets cloud computing with Python 3

Status of Unicode in Python 3, Victor Stinner
Discuss Unicode status in Python 3

Porting to Python 3, Lennart Regebro
3 parts: porting options, prepping, common issues

Recent+Upcoming Events

Oct 18-20: Intro+Inter. Python course, San Francisco
http://cyberwebconsulting.com

Jul 25-29 O'Reilly Open Source (OSCON), Portland
http://oscon.com

Jul 11-13 ACM CSTA CS&IT Conference, NYC
http://www.csitsymposium.org

Jun 20-25 EuroPython, Florence
http://europython.eu

May 8-10: Google I/O, San Francisco
http://google.com/io

