Python 3: The Next
Generation

Wesley J. Chun
wescpy@gmail .com
@wescpy
http://corepython.com
EuroPython/PyCon IT
Firenze/Florence
Jun 2011

About the Speaker

m Software engineer by profession
m Currently at Google (cloud products)
m Course instructor: teaching Python since 1998

m Private Corporate Training & Public Courses

m Community volunteer
m User groups: BayPIGgies and SF Python Meetup
m Other: Tutor mailing list; Python conferences

m Author/co-author (books, articles, blog, etc.)
w Core Python Programming ([2009,]2007, 2001)
w Python Fundamentals LiveLessons DVD (2009)
u Python Web Development with Django (2009)

I Teach

Connecting The
Python Community

Samta Crux
Gxtension
. inSilicon Valley

O REILLY

OSCON

Opn Sonwrcw Commnton

JULY 23-27, 2007
PORTLAND, OREGON

Speaker

Y

SEATTLE
PUBLIC
SCHOOLS

==
core

PYTHON

programming

Python Wieb Development with

Django

PYTHON

[_'rr‘c!qd‘innmint‘]

I Code

Vertebral Fractured

About You and This Talk

m Assumes some Python knowledge/experience
m Will not cover Python basics here

m Today focused on Python 3
m Differences between Python 2 and 3
m Role of remaining Python 2.x releases

m Timeline and Transitioning

Questions

m What does it all mean?

m Are all my Python programs going to break?

m Will I have to rewrite everything?

m How much time do I have?

m When is Python 2 going to be EOL'd?

m [s Python being rewritten completely and will I even
recognize it?

m What are the changes between Python 2 and 3 anyway?

m Are migration plans or transition tools available?

m Should I start w/Python 2 or Python 3 if I want to learn
Python?

m Are all Python 2 books obsolete?

Fact or Fiction? Rumors all TRUE...

m Python 3 does exist

m There are some users of Python 3

m Most corporations still using Python 2

m Some projects have been ported to Python 3

m More projects have started porting to Python 3

m [am not a Python 3 user (yet)

Python 2 and Python 3

m Python stands at a crossroads

m [n transition to next generation
m [(+courses & books) promote version-independence
m All about language itself
m Not focused on syntax differences

m BUT

m Cannot ignore 3.x backwards-incompatibility

Python 3: The What and the Why

m Justifying the existence of 3.x

m Fix early design flaws

m Provide more universal data types

m Clean up language and library

m Some new features, many small improvements
m Plan

m Timeline: 2.x will live on for some time

m 2.x and 3.x developed in parallel

m Migration tools (i.e., 2€03, Python 2.6+)

m More information in PEPs 3000 and 3100

3.x Not Backwards-Compatible

m [s all my Python code going to break? YES

® Do I have to rewrite everything? HOPEFULLY
NOT

m Hopefully porting won't be grueling
m Easy stuff easier, hard stuff harder

m Causes (negative) buzz in industry
m Won't execute most 1.x/2.x code

m Will I even recognize Python?
m General syntax: same flavor
m Basily broken when print becomes a function (vs. stmt)

Stability Over the Years

m Backwards-compatibility never really been an issue
m Steadfast determination to preserve compatibility
m In 2000, Python 2.0 ran 1.5.2 software just fine

m 2.0a released on same day as 1.6 (Why? ASFAT.)

m 2.6 developed at same time as 3.0 (Why? Wait.)

m Cost: passes on "sticky" flaws & deprecated features

Why is Python Changing?

m Why isn't Python changing?
m [t usually doesn't!
m Has always been backwards compatible
m Python 3 still recognizable
m Not being rewritten/redesigned from scratch
m Not a standard (yet)
m Backwards-incompatible for the future's sake
m Must drop "sticky" flaws and deprecated features

m [terate, improve, evolve, etc.

Python 3 Breakage

m 1st release that deliberately breaks compatibility
m No promise that it will not ever happen again
m But it took 18 years for this first one to occur
m "Backcompat" always top priority except this time
m BTW, it's still a high priority
m Python follows agile method of continuous iteration
m Interpreter development follows methodology too

m 3.0 just a bit larger of a hop

Python 2 vs. 3: Key Differences

m print & exec changed to functions
m Strings: Unicode; bytes/bytearray types
m True division
1/2 == 0.5
m Updated Syntax for Exceptions
m [teration upgrades/Iterables Everywhere
m Various Type Updates
m One class type
m Updates to integers

m Cannot compare mixed types
m New "construction”

m Other Minor Changes

m Fixes, Deprecation, Improvements

print: Statement to Function

m Fasiest way to slip up in Python 3
m Especially in interactive interpreter
m Need to get used to adding parentheses
m Why the change?
m As a statement, limits improvements to it
m As a function...
m Behavior can be overtidden w/keyword parameters
m New keyword parameters can be added
m Can be replaced if desired, just like any other BIF*
m More information in PEP 3105

m (*¥) BIF = built-in function, FF = factory function

printin Python (1 and) 2

m Using the "old" print
>>> 1 =1
>>> print "Python*
Pythonis number 1

is", "number”®, 1

m Using the "new" printin 2.6+
>>> from __ future__ import print_function
>>> print
<built-in function print>
>>> print("foo", "bar")
foo bar

print () in Python 3

m Using the "new" printin 3.0+
>>> 1 = 1
>>> print("Python® "is®, "number®, 1)
Pythonis number 1

m (Deliberate exclusion of comma b/w 'Python' & 'is")

Strings: Unicode by Default

m This change couldn't come soon enough

m People have daily issues w/Unicode vs. ASCII

m Does the following look familiar?

UnicodeEncodeError: "ascii® codec can"t
encode character u"\xae" In position O:
ordinal not iIn range(128)

m Results from non-ASCII characters in valid 8-bit strings

m More Unicode info:
http://docs.python.org/3.0/howto/unicode.html

10

New String Model

m Users shouldn't even use those terms any more
m It's not Unicode vs. ASCII; it's zext vs. data
m Text represented by Unicode... real "strings"
m Data refers to ASCII, bytes, 8-bit strings, binary data

m Changes
m STr type now bytes (new b literal)
m unicode type now Str (no more U literal)
m basestring deprecated (former base class)
m New mutable bytesarray

m More information in PEPs 358, 3112, 3137, 3138

Single Class Type

m 2.2: first step taken to unify classes & types

m Since then, there have been 2 class types

m Original classes called "classic classes"

m Second generation classes called "new-style classes"

m Python 3 deprecates classic classes
m They no longer exist

m All classes are of the same type

m More information in PEPs 252 and 253

11

Classic Classes

m "Normal" classes in typical OOP languages
m Classes: types
m Instances: objects of those types
m Problem: Python classic classes 7o normal
m Classes: "class objects"
m Instances: "instance objects"
m Existing Python types can't be subclassed (not classes!)
m Common programmer desire to modify existing types

m Handicapped versions of certain types had to be created
m UserlList,UserDict, etc.

Classic vs. New-style classes

m Syntactically, difference is oObject
class ClassicClass:

pass
H Vs
class NewStyleClass(object):
pass

m In Python 3, both idioms create same class type

12

Updated Syntax for Exceptions

m In Python (1 and) 2, multiple idioms...
m For raising exceptions
m For handling exceptions

m In Python 3, syntax...
m Improved, consolidated, less confusing

m More information in PEP 3109 and 3110

Exception Handling

m Catching/Handling One Exception
except ValueError, e:

m Catching/Handling Multiple Exceptions
except (ValueError, TypeError), e:

m € : exception instance usually has error string

m Mistakes easily made as parentheses required!!

m Developers attempt the invalid:
except ValueError, TypeError, e:

m Code does not compile (SyntaxError)

13

Improving Handling Mechanism

m (New) as keyword helps avoid confusion
m Parentheses still required
m Equivalents to earlier eXCept statements:
except ValueError as e:
except (ValueError, TypeError) as e:
m Required in 3.0+
m Available in 2.6+ as transition tool
m Yes, 2.6+ accepts both idioms
m More information in PEP 3110

Consolidated Exception
Throwing /Raising

m How do I say this?

m Python has more than one way to throw exceptions
m 12(!) actually if you're counting

m The most popular over the years:
raise ValueError:
raise ValueError, e:

m Remember:

m "There should be one -- and preferably only one --
obvious way to do it."

m From the Zen of Python (“import this™)

14

New Idiom with Exception Classes

m Exceptions used to be strings
m Changed to classes in 1.5

m Enabled these new ones:
raise ValueError()
raise ValueError(e)

m Required in 3.0+
m Available in 1.5+ as transition tool :-)

m (Changed to new-style classes in 2.5)

*Updates to Integers

m Major
m Unification of two integer types
= Old long type deprecated
m Changing the division operator (/)
m Plus new division operator [/ /]
m Minor
m New binary literals

m Updated octal literals

15

Single Integer Type

m The past: two different integer types

m 1INt - unsigned 32- (or 64-bit) integers
m Had OverflowError

m long -- unlimited in size except for VM
m L or I designation for differentiation

m Starting in 2.2, both unified into single integer type
m No overflow issues and still unlimited in size

m L or I syntax deprecated in 3.0
m More information in PEP 237

Changing the Division Operator (/)

m Executive summary
m Doesn't give expected answer for new programmers
m Changed so that it does
m Terminology
m Classic Division
m Floor Division
m True Division
m Controversy with this change:

m Programmers used to floor division for integers

16

Classic Division

m Default 2.x division symbol (/) operation
m 1INt operands: floor division (truncates fraction)

m One “float™: / performs float/"true" division
m Result: Float even if one operand an Int

m INnt "coerced" to othet's type before operation

m Classic division operation
>>> 1/ 2
0
>>> 1.0/ 2
0.5

True Division

m Default 3.x division symbol (/) operation
m Always perform real division, returning a Float

m Hasier to explain to new programmer or child...
m ..why one divide by two is a half rather than zero

m True division operation
>>> 1/ 2
0.5
>> 1.0/ 2
0.5

17

Floor Division

m "New" division operator (//)... added in Python 2.2
m Always floor division regardless of operand types

m Floor division operation
>>> 1 // 2
0
>>> 1.0 // 2
0.0
>>> -1 // 2
-1

Accessing True Division

m To use true division in Python 2.2+:

from _ future__ import division
m True division default starting with 3.0
m Division -Q option

m 0ld -- always classic division

® NEeW -- always true division

mwarn -- warn on Int/int division

mwarnall -- warn on all division operations

m More information in PEP 238

18

Update to Integer Literals

m Inspired by existing hexadecimal format
m Values prefixed with leading OX (or OX)
0x80, Oxffff, OXDEADBEEF...

m Modified octal literals

m New binary literals

m Required in 3.0+

m Available in 2.6+ as transition tool
m More information in PEP 3127

New Binary Literals

m New integer literal format
® Never existing in any previous version
m Ruins some existing exercises :P

m Values prefixed with leading Ob
0b0110

m New corresponding BIF bin

m Modified corresponding BIFs oCt & hex

19

Modified Octal Literals

m "Old" octal representation
m Values prefixed with leading single O
m Confusing to some users, especially new programmers

m Modified with an additional "o"

m Values prefixed with leading 00

m Python (1.x and) 2.x: 0177

m Python 2.6+ and 3.x: 00177

m Modified corresponding BIFs oCt & hex

Python 2.6+ Accepts Them All

>>> 0177
127

>>> 00177
127

>>> 0b0110
6

>>> oct(87)
"0127*

>>> from future_builtins import *
>>> oct(87)
"00127"

20

Iterables Everywhere

m Another 3.x theme: memory-conservation

m [terators much more efficient
m Vs. having entire data structures in memory
m Especially objects created solely for iteration

m No need to waste memory when it's not necessary
m Dictionary methods

m BIF (Built-in Function) replacements

Dictionary Methods

m dict.keys dict.items,dict.values
m Return lists in Python (1 and) 2

m dict.iterkeys, dict.iteritems,

dict.itervalues

m Jterable equivalents replace originals in Python 3
m iter * names are deprecated

m If you really want a list of keys for d :
listofkeys = list(d)

m If you really want a sorted list of keys for d :
sortedkeys = sorted(d)

m Morte information in PEP 3106

21

Updates to Built-Ins

m Changes similar to dictionary method updates

® Built-ins returning lists in 2.x return iterators in 3.x
mmap, Filter xrange, zip

m Other built-ins: new, changed, moved, or removed
m [n addition to iteration changes above
m reduce moves to Functools module
m raw_input replaces and becomes 1Nput
m More information in PEP 3111

* map and Filter Replacements

m Itertools. imap replaces & becomes map

m itertools. ifilter replaces & becomes
Ffilter

m Both semi-deprecated by new Python features
m List comprehensions (2.0) or generator expressions (2.4)

m Where you need a list, can use a "listcomp"

m For memory-efficiency, use a "genexp" instead

22

*Other 3.x Iteration Replacements

Xrange

m Xrange replaces & becomes range
zip

m itertools. 1zip replaces & becomes Z1p
file.xreadlines

m Xreadl Ines method replaces and becomes
readlines

m F1le gone too

*3.x Type Updates

m Integers
m (Already discussed)
m Files
m New 10 classes replace File object
m More information in PEP 3116
m Dictionaries
m (Method changes already discussed)
= New dictionary comprehensions "dictcomps"
m Sets
m New set comprehensions "setcomps”
m Tuples

® Methods for the first time ever

23

Dictionary Comprehensions

m Inspired by d1CE () call passing in 2-tuples
m Builds diCt w/1st & 2nd tuple elements as key & value,
ICSP.
m Now can use the equivalent but more flexible
{k: v for k, v in two_tuples}

m Example
>>> {k: v*2 for k, v in zip(range(5),
range(-4, 1))}
{0: -8, 1: -6, 2: -4, 3: -2, 4: 0}

Sets

m Set Literals
{1, 10, 100, 1000}
m Reflects similarity/relationship sets have with diCt s
m { } still represents an empty dict
m Must still use Set FF/BIF to create an empty set
m Set Comprehensions
m Follow listcomp, genexp, and dictcomp syntax
>>> {10 ** i for i in range(5)}
{1000, 1, 10, 100, 10000}
m Reminder: diCt s and Set s unordered (hashes)

24

Tuple Methods

m Por the first time ever, tuples will now have methods
m Specifically count and 1ndex
m More convenient alternative to duplicating to a list

m Just to find out how many times an object appears in it

m Where it is in the list if it appears at all
m [ogical since read-only ops on an immutable data

type

*Other Minor Changes

m Reserved Words

m Built-ins (functions and methods)
m Operators

m Types

m Modules/Packages

25

Reserved Words

m Includes statements, constants, keywords

m Added
mas,with,nonlocal , True, False

m Removed
mprint, exec

*Built-Ins

m Functions & methods, but not factory functions

m BIFs
m Added: ascii,bin, exec,memoryview, next print
m Moved: reduce

= Removed: apply ,callable cmp, coerce, execfile,
intern, raw_input reduce, reload, unichr xrange

m Replaced: map, Filter, hex, input,oct, range, zip
m BIMs
m Added: New string and tuple methods

m Replaced: Altered d i Ct methods and Fi le object (+methods)
replaced by 10 classes (+methods)

26

*Operator and Type Changes

m Operators
m Removed
m<> "
m Types/Factory Functions

m Added
= bytes, bytearray , rung

m Removed
m basestring, buffer , /i, long,unicode , xrange

*Modules/Packages

m Added
m abc,ast, fractions, future_builtins, io, json,
multiprocessing, numbers,plistlib,ssl

m Removed
= bsddb (dbm.bsd) , sunaudio (use sunau instead) , rfc822 , mimetools,
htmllib,sgmllib, commands (some code moved to subprocess),
statvfs,multifile,sre,mhlib, ihooks, fpformat,dircache,
Canvas, user ,mutex, imputil cPickle
m Replaced
m urllib (package) replaces urllib ,urllib2 ,urlparse, robotparser
m http (package) replaces httplib, Cookie, cookielib, *HTTPServer’
m Xmlrpc (package) replaces xmlrpclib, SimpleXMLRPCServer ,
DocXMLRPCServer
dbm (package) teplaces anydbm , whichdb , gdbm, dbhash , dbm, dumbdbm

27

*Migrating to Python 3

m Are migration plans or transition tools available?

YES
m Develop a transition plan
m Wait for dependencies to port
m Develop a comprehensive test suite
m Pollow granular migration steps

m Use migration tools

Recommended Transition Plan

From "What's New in Python 3.0" document (see above)

Wait for your dependencies to port to Python 3

m Pointless to start before this except as exercise
Start w/excellent coverage: ensure solid test suites
Port to latest Python 2.x (2.6+)
Use -3 command-line switch (warns against incompats)
Run 2103 tool
Make final fixes and ensure all tests pass
How much time do I have? LOTS

m When is Python 2 going to be EOL'd? "COUPLE OF
YEARS"

28

*Migration Steps

m Port to latest Python 2.x (2.6+)
m Same level of difficulty as a Python X.Y to X.Y+7 port
m Make sure all tests pass
m Use 2.6+'s -3 command line switch
m Enable warnings for features removed/changed in 3.x
m Run test suite again
m Fix code until no warnings left and all tests pass
m Run 21t03 source translator over codebase
m Check resulting Python 3 versions of app & test files
m Run Python 3 test suites followed by application

m Make final fixes and ensure all tests pass

*The -3 switch

m Warn about Python 3.x incompatibilities, including:
dict.has_key
apply
callable
coerce
execfile
reduce
reload

29

2103 Tool

m Examples of what it does
m Changes backtick-quoted strings * * to repr
m Converts Print statement to function
m Removes L long suffix
m Replaces <> with |=
m Changes cal lable (obj) to hasattr (obj,"'__call ")

m Not a crystal ball... what it doesn't do
m Stop using obsolete modules
m Start using new modules
m Start using class decorators

m Start using iterators and generators

m http://docs.python.org/3.0/library/2t03.html

3to2 Tool

m Refactors valid 3.x syntax to 2.x (if possible)

m http://www.startcodon.com/wordpress/?cat=8
m http://bitbucket.org/amentajo/lib3to2/

m http://pypi.python.org/pypi/3to2

m http://us.pycon.org/2010/conference/posters/acce

pted (P9)

30

Python 2.x

m Python 2.x not EOL'd (yet)...
m Quite the opposite
m 2.6: first w/backported 3.x features
m 2.0.x-2.7.x play significant role
m 2.x & 3.x developed in parallel
m 2.6 & 3.0 almost released at same time(!)

m Keep 2.x alive for as long as it takes to migrate users
m | call a decade (2008-2018)

3.x Features Available in 2.6+

m New-style classes

m T'rue division

m Changes to exception handling & raising idioms

m No integer overflow, integer literal changes

m bytes type and literals/strings (synonym for STr)
m Class decorators

m Access to some 3.x BIF/BIM changes

m Access to some new modules/packages

31

Non-Autocompat Features

m Not all 3.x features backwards-portable to 2.x
m Not all work in parallel w/original 2.x functionality

m Print must stay a statement
m Must explicitly switch to BIF
from _ future__ import print_function

m Built-in functions w/new 3.x behavior must be
imported
mascii Filter hex,map,oct, zip, etc.
m Import from Future_bui Itins module

Python 3 Status

m Operating Systems (c=current, f=future,
e=experimental)

® http://oswatershed.org/pkg/python3.0
m Arch, Debian, Fedora, Gentoo, OpenSuSE, Ubuntu
m Also IUS/Rackspace RHEL/CentOS 5

32

Number of Ports

m Today: 456 in packages total (in PyPI) are 3.x
m ~450: Jun 2011
m ~350: Mar 2011
m ~300: Jan 2011
m ~225: Aug 2010
m ~125: Feb 2010

m http://pypi.pyvthon.org/pypir:action=browse&c=533&sh
ow=all

http://dev.pocoo.org/~gbrandl/py3
pkgs.png

Python 3 packages

450 -
400 —
380
300
280
200
150
100 —
a0

DJFMAWKJITIJASONDJFHAM S JASOND JFMARNT
T O OF eblamtipMay uduFugeficilodec LF elanipMaw unlu Bugeictiobec 1E eflarfipau urdul
Declan Jan Jan

33

Ported Packages

m virtualenv, SQLAlchemy, Mako, NumPy, SciPy
(almost),

m distribute, setuptools, bsddb (bsddb3), CherryPy,

m coverage, cx_Oracle, Cython, docutils, gmpy, Jinja2,

m Ixml, Markdown, mod_wsgi, py-postgresql,
Pygments,

m PyQt, pyserial, PyWin32, SWIG, ...

Port Tracking

m http://py3ksupport.appspot.com

m http://onpython3yet.com

m http://python3wos.appspot.com

34

Porting Guides

m http://techspot.zzzeek.org/2011/01/24/zzzeek-s-guide-to-
pyvthon-3-porting/

m http://lucumr.pocoo.org/2010/2/11/porting-to-python-3-a-
guide/

m http://docs.python.org/3.0/whatsnew/3.0.html

m http://wiki.python.org/moin/PortingToPy3k

m http://diveintopython3.org/porting-code-to-python-3-with-
2to3.html

m http://peadrop.com/blog/2009/04/05/potting-yout-code-
to-python-3/
m http://www.linuxjournal.com/content/python-python-

python-aka-python-3

Futures

m 3.2.1 released yesterday, today, tomorrow?!?

m 2.7.x final 2.x release (now 2.7.2; last week)

m Alex proposes Django on Python 3 possibility this
year

m 3.3 release schedule PEP 398
m Estimated Aug 2012

35

Books and Learning Python

m Have existing Python (2) code? S7art _there_.
m If not, start with Python 3

m There are some Python 3 books, but...
m They're probably obsolete, e.g., 3.0
m Not really all that useful (yet)

m Are all Python 2 books obsolete? No# yer
m Easier to learn via Python 2 books/tutorials
m Most online/in-print still in Python 2

m Hybrid books coming soon...

m Existing Python devs should port projects

Conclusion

m Python 3: the language evolving
m It (the future) is here (but 2.x is s#// here!)
m Backwards-incompatible but not in earth-shattering ways
m Improve, evolve, remove sticky flaws
m Still a little rough around edges but usable
m To ease transition
m 2.x sticking around for the near-term
m 2.6+ releases contain 3.x-backported features

m Use -3 switch and migration tools

m You will enjoy Python even more

m But need to wait a little bit more to port

36

Some PyCon 2011 Talks FYI

Mastering Python 3 1/O, Dave Beazley
m Tour of Python 3 I/O system

Cooking with Python 3, David Beazley & Brian K. Jones
m Porting Python Cookbook recipes to Python 3

Using Python 3 to Build a Cloud Computing Service for my
SB 11, Dave Beazley

m Ancient HW meets cloud computing with Python 3

Status of Unicode in Python 3, Victor Stinner

m Discuss Unicode status in Python 3

Porting to Python 3, Lennart Regebro

m 3 parts: porting options, prepping, common issues

Recent+Upcoming Events

m Oct 18-20: Intro+Inter. Python course, San Francisco
m http://cyberwebconsulting.com

m Jul 25-29 O'Reilly Open Source (OSCON), Portland
m http://oscon.com

m Jul 11-13 ACM CSTA CS&IT Conference, NYC
m http://www.csitsymposium.org

m Jun 20-25 EuroPython, Florence
m http://europython.cu

m May 8-10: Google 1/0O, San Francisco

m http://google.com/io

