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What is PyPy?

Past EuroPython talks:
I 2004: PyPy
I 2005: PyPy as a compiler
I 2006: An introduction to PyPy, PyPy architecture session, What can PyPy do for you
I 2007: PyPy 1.0 and Beyond, PyPy Python Interpreter(s) Features, PyPy: Why and how

did it (not) work?
I 2008: PyPy for the rest of us, PyPy status talk
I 2009 PyPy: Complete and Fast

I 2010: PyPy 1.3: Status and News

You should know by now :-)
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What is PyPy? (seriously)

PyPy
I started in 2003
I Open Source, partially funded by EU and others
I framework for fast dynamic languages
I Python implementation

as a Python dev, you care about the latter
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PyPy 1.5

Released on 30 April, 2011
Python 2.7.1
The most compatible alternative to CPython
Most programs just work
(C extensions might not)

fast
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PyPy features

JIT
I automatically generated
I complete/correct by construction
I multiple backends: x86-32, x86-64, ARM

Stackless
I not yet integrated with the JIT (in-progress)

cpyext
I CPython C-API compatibility layer
I not always working
I often working: wxPython, PIL, cx_Oracle, mysqldb,

pycairo, ...

compact instances (as using __slots__)
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Speed
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Improvements in the past year
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Compare to CPython
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Real world use case (1)

LWN’s gitdm
I http://lwn.net/Articles/442268/
I data mining tool
I reads the output of git log
I generate kernel development statistics

Performance
I CPython: 63 seconds
I PyPy: 21 seconds

lwn.net
[...] PyPy is ready for prime time; it implements the (Python
2.x) language faithfully, and it is fast.
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Real world use case (2)

MyHDL: VHDL-like language written in Python
I http://www.myhdl.org/doku.php/performance

I (now) competitive with “real world” VHDL and Verilog
simulators

myhdl.org
[...] the results are spectacular. By simply using a different
interpreter, our simulations run 6 to 12 times faster.
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Real world use case (3)

Translating PyPy itself
Huge, complex piece of software
All possible (and impossible :-)) kinds of dynamic and
metaprogrammig tricks
~2.5x faster with PyPy
(slow warm-up phase, though)

Ouroboros!
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Real world use case (4)

Your own application
Try PyPy, it might be worth it
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Not convinced yet?

Real time edge detection
def sobeldx(img):
res = img.clone(typecode=’d’)
for p in img.pixeliter():

res[p] = (-1.0 * img[p + (-1,-1)] +
1.0 * img[p + ( 1,-1)] +
-2.0 * img[p + (-1, 0)] +
2.0 * img[p + ( 1, 0)] +
-1.0 * img[p + (-1, 1)] +
1.0 * img[p + ( 1, 1)]) / 4.0

return res
...
...
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Live demo
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Is Python slow?

Python is slow
Python is hard to optimize

Huge stack of layers over the bare metal
Abstraction has a cost (... or not?)
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Python is complicated

How a + b works (simplified!):
look up the method __add__ on the type of a
if there is one, call it
if it returns NotImplemented, or if there is none, look
up the method __radd__ on the type of b
if there is one, call it
if there is none, or we get NotImplemented again,
raise an exception TypeError
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Python is a mess

How obj.attr or obj.method() works:
...

no way to write it down in just one slide
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Killing the abstraction overhead

Python
class Point(object):

def __init__(self, x, y):
self.x = x
self.y = y

def __add__(self, q):
if not isinstance(q, Point):
raise TypeError

x1 = self.x + q.x
y1 = self.y + q.y
return Point(x1, y1)

def main():
p = Point(0.0, 0.0)
while p.x < 2000.0:
p = p + Point(1.0, 0.5)

print p.x, p.y

C
#include <stdio.h>

int main() {
float px = 0.0, py = 0.0;
while (px < 2000.0) {

px += 1.0;
py += 0.5;

}
printf("%f %f\n", px, py);

}
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Pointless optimization techniques

#
for item in some_large_list:

self.meth(item)

meth = self.meth
for item in some_large_list:

meth(item)

def foo():
res = 0
for item in some_large_list:

res = res + abs(item)
return res

def foo(abs=abs):
res = 0
for item in some_large_list:

res = res + abs(item)
return res

#

[i**2 for i in range(100)]

from itertools import *
list(imap(pow, count(0),

repeat(2, 100)))

for i in range(large_number):
...

for i in xrange(large_number):
...

class A(object):
pass

class A(object):
__slots__ = [’a’, ’b’, ’c’]
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Concrete example: ctypes

import ctypes
libm = ctypes.CDLL(’libm.so’)
pow = libm.pow
pow.argtypes = [ctypes.c_double, ctypes.c_double]
pow.restype = ctypes.c_double
pow(2, 3) # <---
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Layers and layers

CFuncPtrFast.__call__ (Python)
check that the cache is still valid

CFuncPtrFast._call_funcptr (Python)
some runtime checks (e.g. _flags_)

_ffi.FuncPtr.__call__ (RPython)
typecheck/unbox arguments, put them in raw C buffers

c_ffi_call (C) [libffi.so]
takes arguments from the raw C buffers

pow@0xf72de000 (C) [libm.so]
return 8
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ctypes demo

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 21 / 24



Conclusion

PyPy is fast
mature
stable
abstractions for free!

(I wonder why you all are still here instead of busy
trying PyPy :-))

I not all C extensions are supported (numpy anyone?)
I too much memory (sometimes)
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How to help PyPy?

Try it on your application
I if it’s slow, we want to know!
I if it does not work, too :-)
I if it works and it’s fast, that as well

Tell people about PyPy
Contribute to PyPy! (it’s not that hard :-))

Give us money, to make PyPy better
I donations
I per feature contracts
I consultancy (hire us to speed up your code)
I support contracts
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Contacts, Q/A

http://pypy.org

blog: http://morepypy.blogspot.com
mailing list: pypy-dev (at) python.org
IRC: #pypy on freenode
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