
PyPy in Production

Antonio Cuni
Armin Rigo

EuroPython 2011

June 23 2011

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 1 / 24

What is PyPy?

Past EuroPython talks:
I 2004: PyPy
I 2005: PyPy as a compiler
I 2006: An introduction to PyPy, PyPy architecture session, What can PyPy do for you
I 2007: PyPy 1.0 and Beyond, PyPy Python Interpreter(s) Features, PyPy: Why and how

did it (not) work?
I 2008: PyPy for the rest of us, PyPy status talk
I 2009 PyPy: Complete and Fast

I 2010: PyPy 1.3: Status and News

You should know by now :-)

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 1 / 24

What is PyPy?

Past EuroPython talks:
I 2004: PyPy
I 2005: PyPy as a compiler
I 2006: An introduction to PyPy, PyPy architecture session, What can PyPy do for you
I 2007: PyPy 1.0 and Beyond, PyPy Python Interpreter(s) Features, PyPy: Why and how

did it (not) work?
I 2008: PyPy for the rest of us, PyPy status talk
I 2009 PyPy: Complete and Fast

I 2010: PyPy 1.3: Status and News

You should know by now :-)

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 1 / 24

What is PyPy?

Past EuroPython talks:
I 2004: PyPy
I 2005: PyPy as a compiler
I 2006: An introduction to PyPy, PyPy architecture session, What can PyPy do for you
I 2007: PyPy 1.0 and Beyond, PyPy Python Interpreter(s) Features, PyPy: Why and how

did it (not) work?
I 2008: PyPy for the rest of us, PyPy status talk
I 2009 PyPy: Complete and Fast

I 2010: PyPy 1.3: Status and News

You should know by now :-)

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 1 / 24

What is PyPy? (seriously)

PyPy
I started in 2003
I Open Source, partially funded by EU and others
I framework for fast dynamic languages
I Python implementation

as a Python dev, you care about the latter

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 2 / 24

PyPy 1.5

Released on 30 April, 2011
Python 2.7.1
The most compatible alternative to CPython
Most programs just work
(C extensions might not)

fast

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 3 / 24

PyPy 1.5

Released on 30 April, 2011
Python 2.7.1
The most compatible alternative to CPython
Most programs just work
(C extensions might not)

fast

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 3 / 24

PyPy features

JIT
I automatically generated
I complete/correct by construction
I multiple backends: x86-32, x86-64, ARM

Stackless
I not yet integrated with the JIT (in-progress)

cpyext
I CPython C-API compatibility layer
I not always working
I often working: wxPython, PIL, cx_Oracle, mysqldb,

pycairo, ...

compact instances (as using __slots__)
antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 4 / 24

PyPy features

JIT
I automatically generated
I complete/correct by construction
I multiple backends: x86-32, x86-64, ARM

Stackless
I not yet integrated with the JIT (in-progress)

cpyext
I CPython C-API compatibility layer
I not always working
I often working: wxPython, PIL, cx_Oracle, mysqldb,

pycairo, ...

compact instances (as using __slots__)
antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 4 / 24

PyPy features

JIT
I automatically generated
I complete/correct by construction
I multiple backends: x86-32, x86-64, ARM

Stackless
I not yet integrated with the JIT (in-progress)

cpyext
I CPython C-API compatibility layer
I not always working
I often working: wxPython, PIL, cx_Oracle, mysqldb,

pycairo, ...

compact instances (as using __slots__)
antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 4 / 24

PyPy features

JIT
I automatically generated
I complete/correct by construction
I multiple backends: x86-32, x86-64, ARM

Stackless
I not yet integrated with the JIT (in-progress)

cpyext
I CPython C-API compatibility layer
I not always working
I often working: wxPython, PIL, cx_Oracle, mysqldb,

pycairo, ...

compact instances (as using __slots__)
antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 4 / 24

Speed

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 5 / 24

Improvements in the past year

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 6 / 24

Compare to CPython

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 7 / 24

Real world use case (1)

LWN’s gitdm
I http://lwn.net/Articles/442268/
I data mining tool
I reads the output of git log
I generate kernel development statistics

Performance
I CPython: 63 seconds
I PyPy: 21 seconds

lwn.net
[...] PyPy is ready for prime time; it implements the (Python
2.x) language faithfully, and it is fast.

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 8 / 24

http://lwn.net/Articles/442268/

Real world use case (1)

LWN’s gitdm
I http://lwn.net/Articles/442268/
I data mining tool
I reads the output of git log
I generate kernel development statistics

Performance
I CPython: 63 seconds
I PyPy: 21 seconds

lwn.net
[...] PyPy is ready for prime time; it implements the (Python
2.x) language faithfully, and it is fast.

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 8 / 24

http://lwn.net/Articles/442268/

Real world use case (1)

LWN’s gitdm
I http://lwn.net/Articles/442268/
I data mining tool
I reads the output of git log
I generate kernel development statistics

Performance
I CPython: 63 seconds
I PyPy: 21 seconds

lwn.net
[...] PyPy is ready for prime time; it implements the (Python
2.x) language faithfully, and it is fast.

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 8 / 24

http://lwn.net/Articles/442268/

Real world use case (2)

MyHDL: VHDL-like language written in Python
I http://www.myhdl.org/doku.php/performance

I (now) competitive with “real world” VHDL and Verilog
simulators

myhdl.org
[...] the results are spectacular. By simply using a different
interpreter, our simulations run 6 to 12 times faster.

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 9 / 24

http://www.myhdl.org/doku.php/performance

Real world use case (2)

MyHDL: VHDL-like language written in Python
I http://www.myhdl.org/doku.php/performance

I (now) competitive with “real world” VHDL and Verilog
simulators

myhdl.org
[...] the results are spectacular. By simply using a different
interpreter, our simulations run 6 to 12 times faster.

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 9 / 24

http://www.myhdl.org/doku.php/performance

Real world use case (3)

Translating PyPy itself
Huge, complex piece of software
All possible (and impossible :-)) kinds of dynamic and
metaprogrammig tricks
~2.5x faster with PyPy
(slow warm-up phase, though)

Ouroboros!

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 10 / 24

Real world use case (4)

Your own application
Try PyPy, it might be worth it

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 11 / 24

Not convinced yet?

Real time edge detection
def sobeldx(img):
res = img.clone(typecode=’d’)
for p in img.pixeliter():

res[p] = (-1.0 * img[p + (-1,-1)] +
1.0 * img[p + (1,-1)] +
-2.0 * img[p + (-1, 0)] +
2.0 * img[p + (1, 0)] +
-1.0 * img[p + (-1, 1)] +
1.0 * img[p + (1, 1)]) / 4.0

return res
...
...

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 12 / 24

Live demo

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 13 / 24

Is Python slow?

Python is slow
Python is hard to optimize

Huge stack of layers over the bare metal
Abstraction has a cost (... or not?)

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 14 / 24

Is Python slow?

Python is slow
Python is hard to optimize

Huge stack of layers over the bare metal
Abstraction has a cost (... or not?)

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 14 / 24

Is Python slow?

Python is slow
Python is hard to optimize

Huge stack of layers over the bare metal
Abstraction has a cost (... or not?)

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 14 / 24

Python is complicated

How a + b works (simplified!):
look up the method __add__ on the type of a
if there is one, call it
if it returns NotImplemented, or if there is none, look
up the method __radd__ on the type of b
if there is one, call it
if there is none, or we get NotImplemented again,
raise an exception TypeError

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 15 / 24

Python is a mess

How obj.attr or obj.method() works:
...

no way to write it down in just one slide

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 16 / 24

Python is a mess

How obj.attr or obj.method() works:
...

no way to write it down in just one slide

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 16 / 24

Killing the abstraction overhead

Python
class Point(object):

def __init__(self, x, y):
self.x = x
self.y = y

def __add__(self, q):
if not isinstance(q, Point):
raise TypeError

x1 = self.x + q.x
y1 = self.y + q.y
return Point(x1, y1)

def main():
p = Point(0.0, 0.0)
while p.x < 2000.0:
p = p + Point(1.0, 0.5)

print p.x, p.y

C
#include <stdio.h>

int main() {
float px = 0.0, py = 0.0;
while (px < 2000.0) {

px += 1.0;
py += 0.5;

}
printf("%f %f\n", px, py);

}

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 17 / 24

Killing the abstraction overhead

Python
class Point(object):

def __init__(self, x, y):
self.x = x
self.y = y

def __add__(self, q):
if not isinstance(q, Point):
raise TypeError

x1 = self.x + q.x
y1 = self.y + q.y
return Point(x1, y1)

def main():
p = Point(0.0, 0.0)
while p.x < 2000.0:
p = p + Point(1.0, 0.5)

print p.x, p.y

C
#include <stdio.h>

int main() {
float px = 0.0, py = 0.0;
while (px < 2000.0) {

px += 1.0;
py += 0.5;

}
printf("%f %f\n", px, py);

}

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 17 / 24

Pointless optimization techniques

#
for item in some_large_list:

self.meth(item)

meth = self.meth
for item in some_large_list:

meth(item)

def foo():
res = 0
for item in some_large_list:

res = res + abs(item)
return res

def foo(abs=abs):
res = 0
for item in some_large_list:

res = res + abs(item)
return res

#

[i**2 for i in range(100)]

from itertools import *
list(imap(pow, count(0),

repeat(2, 100)))

for i in range(large_number):
...

for i in xrange(large_number):
...

class A(object):
pass

class A(object):
__slots__ = [’a’, ’b’, ’c’]

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 18 / 24

Pointless optimization techniques

#
for item in some_large_list:

self.meth(item)

meth = self.meth
for item in some_large_list:

meth(item)

def foo():
res = 0
for item in some_large_list:

res = res + abs(item)
return res

def foo(abs=abs):
res = 0
for item in some_large_list:

res = res + abs(item)
return res

#

[i**2 for i in range(100)]

from itertools import *
list(imap(pow, count(0),

repeat(2, 100)))

for i in range(large_number):
...

for i in xrange(large_number):
...

class A(object):
pass

class A(object):
__slots__ = [’a’, ’b’, ’c’]

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 18 / 24

Pointless optimization techniques

#
for item in some_large_list:

self.meth(item)

meth = self.meth
for item in some_large_list:

meth(item)

def foo():
res = 0
for item in some_large_list:

res = res + abs(item)
return res

def foo(abs=abs):
res = 0
for item in some_large_list:

res = res + abs(item)
return res

#

[i**2 for i in range(100)]

from itertools import *
list(imap(pow, count(0),

repeat(2, 100)))

for i in range(large_number):
...

for i in xrange(large_number):
...

class A(object):
pass

class A(object):
__slots__ = [’a’, ’b’, ’c’]

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 18 / 24

Pointless optimization techniques

#
for item in some_large_list:

self.meth(item)

meth = self.meth
for item in some_large_list:

meth(item)

def foo():
res = 0
for item in some_large_list:

res = res + abs(item)
return res

def foo(abs=abs):
res = 0
for item in some_large_list:

res = res + abs(item)
return res

#

[i**2 for i in range(100)]

from itertools import *
list(imap(pow, count(0),

repeat(2, 100)))

for i in range(large_number):
...

for i in xrange(large_number):
...

class A(object):
pass

class A(object):
__slots__ = [’a’, ’b’, ’c’]

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 18 / 24

Pointless optimization techniques

#
for item in some_large_list:

self.meth(item)

meth = self.meth
for item in some_large_list:

meth(item)

def foo():
res = 0
for item in some_large_list:

res = res + abs(item)
return res

def foo(abs=abs):
res = 0
for item in some_large_list:

res = res + abs(item)
return res

#

[i**2 for i in range(100)]

from itertools import *
list(imap(pow, count(0),

repeat(2, 100)))

for i in range(large_number):
...

for i in xrange(large_number):
...

class A(object):
pass

class A(object):
__slots__ = [’a’, ’b’, ’c’]

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 18 / 24

Concrete example: ctypes

import ctypes
libm = ctypes.CDLL(’libm.so’)
pow = libm.pow
pow.argtypes = [ctypes.c_double, ctypes.c_double]
pow.restype = ctypes.c_double
pow(2, 3) # <---

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 19 / 24

Layers and layers

CFuncPtrFast.__call__ (Python)
check that the cache is still valid

CFuncPtrFast._call_funcptr (Python)
some runtime checks (e.g. _flags_)

_ffi.FuncPtr.__call__ (RPython)
typecheck/unbox arguments, put them in raw C buffers

c_ffi_call (C) [libffi.so]
takes arguments from the raw C buffers

pow@0xf72de000 (C) [libm.so]
return 8

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 20 / 24

Layers and layers

CFuncPtrFast.__call__ (Python)
check that the cache is still valid

CFuncPtrFast._call_funcptr (Python)
some runtime checks (e.g. _flags_)

_ffi.FuncPtr.__call__ (RPython)
typecheck/unbox arguments, put them in raw C buffers

c_ffi_call (C) [libffi.so]
takes arguments from the raw C buffers

pow@0xf72de000 (C) [libm.so]
return 8

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 20 / 24

Layers and layers

CFuncPtrFast.__call__ (Python)
check that the cache is still valid

CFuncPtrFast._call_funcptr (Python)
some runtime checks (e.g. _flags_)

_ffi.FuncPtr.__call__ (RPython)
typecheck/unbox arguments, put them in raw C buffers

c_ffi_call (C) [libffi.so]
takes arguments from the raw C buffers

pow@0xf72de000 (C) [libm.so]
return 8

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 20 / 24

Layers and layers

CFuncPtrFast.__call__ (Python)
check that the cache is still valid

CFuncPtrFast._call_funcptr (Python)
some runtime checks (e.g. _flags_)

_ffi.FuncPtr.__call__ (RPython)
typecheck/unbox arguments, put them in raw C buffers

c_ffi_call (C) [libffi.so]
takes arguments from the raw C buffers

pow@0xf72de000 (C) [libm.so]
return 8

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 20 / 24

Layers and layers

CFuncPtrFast.__call__ (Python)
check that the cache is still valid

CFuncPtrFast._call_funcptr (Python)
some runtime checks (e.g. _flags_)

_ffi.FuncPtr.__call__ (RPython)
typecheck/unbox arguments, put them in raw C buffers

c_ffi_call (C) [libffi.so]
takes arguments from the raw C buffers

pow@0xf72de000 (C) [libm.so]
return 8

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 20 / 24

ctypes demo

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 21 / 24

Conclusion

PyPy is fast
mature
stable
abstractions for free!

(I wonder why you all are still here instead of busy
trying PyPy :-))

I not all C extensions are supported (numpy anyone?)
I too much memory (sometimes)

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 22 / 24

Conclusion

PyPy is fast
mature
stable
abstractions for free!

(I wonder why you all are still here instead of busy
trying PyPy :-))

I not all C extensions are supported (numpy anyone?)
I too much memory (sometimes)

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 22 / 24

How to help PyPy?

Try it on your application
I if it’s slow, we want to know!
I if it does not work, too :-)
I if it works and it’s fast, that as well

Tell people about PyPy
Contribute to PyPy! (it’s not that hard :-))

Give us money, to make PyPy better
I donations
I per feature contracts
I consultancy (hire us to speed up your code)
I support contracts

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 23 / 24

How to help PyPy?

Try it on your application
I if it’s slow, we want to know!
I if it does not work, too :-)
I if it works and it’s fast, that as well

Tell people about PyPy
Contribute to PyPy! (it’s not that hard :-))

Give us money, to make PyPy better
I donations
I per feature contracts
I consultancy (hire us to speed up your code)
I support contracts

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 23 / 24

Contacts, Q/A

http://pypy.org

blog: http://morepypy.blogspot.com
mailing list: pypy-dev (at) python.org
IRC: #pypy on freenode

antocuni, arigo (EuroPython 2011) PyPy in Production June 23 2011 24 / 24

http://pypy.org
http://morepypy.blogspot.com

