
www.2ndQuadrant.com

PL/Python – Python inside
the PostgreSQL RDBMS

Peter Geoghegan
(Rhymes with “Ronald Reagan”)

peter@2ndQuadrant.com
http://www.2ndQuadrant.com/

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Licence

• Creative Commons:
– Attribution-Non-Commercial-Share Alike 3.0
– You are free:

• to Share — to copy, distribute and transmit the work
• to Remix — to adapt the work

– Under the following conditions:
• Attribution: You must attribute the work in the manner

specified by the author or licensor
• Non-Commercial: You may not use this work for

commercial purposes
• Share Alike: If you alter, transform, or build upon this

work, you may distribute the resulting work only under
the same or similar license to this one

Source: http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

About me

• PostgreSQL hacker
• Work for 2ndQuadrant as a PostgreSQL

consultant
• Python enthusiast. Most of our internal tools, and

many of our opensource tools such as pgtune
are written in Python.

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

What is a PL?

A language for creating user-defined
functions in the database, that are called
directly from SQL queries.

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

In the context of a RDBMS, what is a function?

• Traditionally, a thin wrapper on a snippet of SQL
that the parser may inline:

-- Create a function from the SQL command line

-- (or, potentially, from within a regular Python app)

CREATE FUNCTION add(integer, integer) RETURNS integer

 AS 'select $1 + $2;'

 LANGUAGE SQL

 IMMUTABLE

 STRICT;

-- Now, to call our newly defined function:

SELECT add(2, 2) AS result;

 result

 4

(1 row)

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

More advanced examples

--Aggregates:

SELECT count(*) from europython_attendees WHERE id IN
(SELECT attendees_id FROM attending_talks WHERE talk =
'PL/Python – Python inside the PostgreSQL RDBMS');

--General functions:

SELECT add_user('Peter Geoghegan',
'peter@2ndquadrant.com');

SELECT upper(name) from users;

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

...and most interestingly

Functions that are:
• External to the database
• Do not operate within the restricted execution

environment of the database.
• Things like writing to sockets and files (with the

permissions of the postgres operating system
user) are possible:

SELECT send_remote_confirmation();

SELECT order_food('Eggs, Bacon & spam', 'greasy spoon');

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

More about functions
Functions can be written in:

• C
• SQL
• A procedural language (PL)

Dozens of PLs, some niche:
• PL/R
• PL/OpenCL
• PL/LOLCODE

Some mainstream:
• PL/PgSQL
• PL/Python

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Topical stuff

• In last year's 9.0 release, great strides were
made in advancing PL/Perl as a procedural
language.

• In the upcoming 9.1 release, due out in about
September, it's PL/Python's turn.

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Overview of PL/Python

• Supports Python 2 and Python 3
• Acts as a seemless wrapper between the SQL

interpreter and Python, mapping datatypes and
concepts as appropriate.

Conceptually:
pl_python_mapping = {'null':None,'integer':int,'anyarray':list}
and so on

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Simple example: Trigger

• Sales table represents each sale
• Line items table represents line items sold that

comprise those sales
• We want to maintain stock quantity of line items

accurately and across applications.
-- represents individual line items for each sale.

CREATE TABLE line_items_sold (

 line_items_sold_id serial PRIMARY KEY,

 sales_id integer NOT NULL REFERENCES sales,

 line_items_id integer NOT NULL REFERENCES line_items,

 qty integer NOT NULL

);

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Trigger example continued
CREATE OR REPLACE FUNCTION line_items_sold_stock_qty() RETURNS TRIGGER

AS $$

 # Work out the increment/decrement amount(s).

 if TD["event"] == 'DELETE':

 delta_qty = TD["old"].qty * -1;

 line_items_id = TD["old"].line_items_id

 elif TD["event"] == 'UPDATE':

 delta_qty = TD["new"].qty - TD["old"].qty;

 line_items_id = TD["old"].line_items_id

 else: # insert

 delta_qty = TD["new"].qty;

 line_items_id = TD["new"].line_items_id

 # Update "line_items" so that the stock qty is accurate

 plan = plpy.prepare(

 """UPDATE line_items SET stock_qty = stock_qty + $1 WHERE line_items_id = $2""", ["integer", "integer"])

 plpy.execute(plan, [delta_qty, line_items_id])

$$ LANGUAGE plpythonu;

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Finally, define trigger itself
CREATE TRIGGER line_items_sold_changed

AFTER INSERT OR UPDATE OR DELETE ON line_items_sold

 FOR EACH ROW EXECUTE PROCEDURE
line_items_sold_stock_qty();

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Finished!

Now, stock levels are maintained regardless of
how, when or where the line items table is
modified. We've baked a business rule into the
database.

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Enforcing datatype level constraints

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Popular barcode formats

• UPC
• EAN-8
• EAN-13
• GTIN-14

All of these formats are valid GTINs. In each
case, the last digit is a checkdigit, that verifies
the integrity of the barcode, based on a simple
formula.

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Here's how we do it in PL/Python

CREATE OR REPLACE FUNCTION is_gtin(barcode bigint)

RETURNS BOOLEAN

IMMUTABLE STRICT

LANGUAGE plpythonu

AS $$

 if barcode is None:

 # Function is strict, so technically

 # this isn't necessary

 return None

 chars = str(barcode)

 total = 0

 for i, c in enumerate(chars):

 total += int(c) if i % 2 == 0 else int(c) * 3

 return total % 10 == 0

$$;

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Domain with check constraint

CREATE DOMAIN gtin AS BIGINT
 CHECK (is_gtin(VALUE));

CREATE TABLE barcodes
(
 barcode gtin primary key,
 products_id integer NOT NULL REFERENCES products
);

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Which we'll now try and violate

INSERT INTO barcodes
(
 barcode,
 products_id
)
VALUES
(
 5060193210737, --Transposition error. Actually “...773”
 17
);
ERROR: value for domain gtin violates check constraint
"gtin_check"

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

In practice...

• Functions initially created with SQL script that
contains a string of python

• Python code actually resides on database server
– There is no .py file

• More complex systems often just have simple
forwarding functions in PL/Python, that import a
custom module call the real functions

• That way, we avail of existing tools
• Unit testing with simple mock objects that

emulate pl/python stuff

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Why not use an ORM/Client side code?

• No approach fundamentally better.
• When low-level business rules need to be

enforced, you can't really beat doing it in the
database.

• To each his/her own.
• ORMs can work well when they're good, and

when the DB isn't treated as a total black box.
• When you treat the DB + ORM as a black box,

you risk making performance tank.
• Combine both approaches!

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Words of wisdom

“Let the database be good at what it's good at,
including smart processing of bulk data...Avoid
shipping data to an external client program just
to process and ship stuff back to the database.
Only fetch data from the database if you need it
to display or send to another system.”

- Andrew Dunstan's dictum (PostgreSQL major
contributor).

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

It may interest you to know...

• Python is embeddable
• Postgres is extensible
• All of this is brought to you by plpython.c
• Less than 5000 lines of C (read: hardly any)

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

The
sandboxing

issue

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

So I lied...

• Well, fibbed
• There is no such thing as PL/Python
• Well, there was, but not anymore
• Problems with restricted execution environment
• PL/Python is today more correctly referred to as

PL/PythonU
• The U stands for untrusted
• Can't be imprisoned in DB's restricted execution

environment
• Inherently hard problem though
• General trend towards richer languages being

hard to sandbox

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

More topical stuff – features in 9.1

• Table function support
• Syntax checking at function creation time
• Traceback information

– Yes, we should have had that a long time ago

• Fix exception handling with Python 3
– Exception classes are now available

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

New features (continued)

• Explicit substransactions
• Implements Python context manager

CREATE FUNCTION make_fund_transfer() RETURNS void AS $$
try:
 with plpy.subtransaction():
 plpy.execute("UPDATE acc SET bal = bal - 100 WHERE name = 'Peter'")
 plpy.execute("UPDATE acc SET bal = bal + 100 WHERE name = 'Marco'")
except plpy.SPIError, e:
 result = "error transferring funds: %s" % e.args
else:
 result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

The database as application server

Case study – Lustre POS

• POS application – traditional business app
• Lots of clients, including fat client, embedded

handset and embedded POS terminals, all based
on native code.

• Installed at lots of remote sites – simple, low-
maintenance infrastructure required.

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Wholesaler interface

• App had to interface with multiple third party
wholesalers

• CSV-ish flat text file format over FTP
• Horrible, ill-specified
• Orders, product updates, special offers, sales

figures
• Found a new way to break every single week
• Had to be able to run from every client, including

scheduler
• PostgreSQL was already available to us
• They don't care about data integrity, but I do!

www.2ndQuadrant.comCopyright © 2011, 2ndQuadrant Limited

Questions?

	Presentation TITLE
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

