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About me

About Jamendo
● Jamendo is a community of free, legal and unlimited music published 

under Creative Commons licenses

● Free Music for users

● Popularity and earnings for artists

● Music licensing and background music at competitive prices for 
companies 

● I'm a Web Developer

● Python, Javascript, PHP, Java/Android

● celery contributor (just one of the hundreds )
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Jamendo needs
● Multi-format music encoding 
● Statistics (downloads, listens, reviews, stars, fb 

likes) on different units
● Music analysis trough external services
● Music qualification trough several sources
● Integration with third part services
● Common jobs (contract generations, 

certifications, bills, search index update)



 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

4

Celery

● Async & Sync processes
● Concurrency within a box
● Distributed (across machines)
● Scheduling (interval, cron, ...)
● Fault tolerant
● Subtask, Set of tasks
● Web monitoring (django-celery and others) 

“Celery is an asynchronous task queue/job queue based on 
distributed message passing. It is focused on real-time 

operation, but supports scheduling as well”
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AMPQ
The Advanced Message Queuing Protocol (AMQP) is an open standard application layer 
protocol for Message Oriented Middleware.
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Celery schema
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Celery worker
● Is the celery process that execute the tasks
● Can serve one or multiple queues
● Have a max number of tasks that can be 

executed at the same time
● Can be remotely controlled
● Have a great configuration option called 

MAX_TASK_PER_CHILD

$ 
$ celeryd -l INFO -c 5 -Q queue1 -E
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Celery worker
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Defining a simple task
from celery.decorators import task

@task
def make_money(how_much):
    logger = make_money.get_logger()
    logger.info("Congratulation, you earned %s$" % how_much)
    if how_much>1000000:
        return "Bora Bora"
    return "Keep working"

>>> result = make_money.delay(200)
>>> result.get()
“Keep working”
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Retrying a task if something fails
from celery.decorators import task

@task
def make_money_real_life(how_much, wife=True):
    try:
        logger = make_money.get_logger()
        if wife:
            raise Exception("Incompatibility exception")
        logger.info("Congratulation, you earned %s$" % how_much)
        if how_much>1000000:
            return "Bora Bora"
        return "Keep working"
    except Exception,exc:
        make_money_real_life.retry(exc=exc,
                                   countdown=60,
                                   args=[how_much,False])
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Task set example 

    def run(self, setid=None, subtasks=None, **kwargs):
        …
        if not setid or not subtasks:
            …
            tasks = []
            for slice in slices:
                tasks.append(uploadTrackSlice.subtask((slice,folder_name)))
            
            job = TaskSet(tasks=tasks)
            task_set_result = job.apply_async()
            setid = task_set_result.taskset_id
            subtasks = [result.task_id for result in task_set_result.subtasks]
            self.incrementalRetry("Result not ready", args=[setid,subtasks])

 #Is a retry than we just have to check the results        
        tasks_result = TaskSetResult(setid, map(AsyncResult,subtasks))
        if not tasks_result.ready():
            self.incrementalRetry("Result not ready", args=[setid,subtasks])
        else:    
            if tasks_result.successful():
                return tasks_result.join()
            else:
                raise Exception("Some of the tasks was failing")

Extract from a  jamendo task that upload track metadata in xml format to an ftp server for 
music analysis
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The Jamendo Task class

class JamTask(Task):
    
    def __call__(self, *args, **kwargs):
        """This method is in charge of call the run method of the task"""
        self.max_retries = 30
        self.sandbox = SandBox(self.name, self.request.id,                 
                        settings.PATH_SANDBOX, settings.DEBUG)
        self.taskLogger = TaskLogger(args, kwargs)
        self.taskLogger.__enter__()
        .
        .
        return self.run(*args, **kwargs)
    .
    .
    def after_return(self, status, retval, task_id, args, kwargs, einfo):
        """This method is called when the tasks end,
        on whatever return state"""
        self.taskLogger.__exit__(status, retval, args, kwargs, einfo)
        self.cleanTaskSandBox(status,kwargs)
        self.closeAllConnections()

 

The way for define common behaviour to all your tasks is to override  __call__ 
and after_return methods of the celery Task class
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Web Monitoring tools

● django-celery
https://github.com/ask/django-celery/

● celery-pylons
http://pypi.python.org/pypi/celery-pylons

● flask-celery
https://github.com/ask/flask-celery/

https://github.com/ask/django-celery/
http://pypi.python.org/pypi/celery-pylons
https://github.com/ask/flask-celery/
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django-celery
Task scheduling and monitoring trough the Django admin 

interface

● The celeryconf.py file is replaced by the django 
settings

● The CELERY_IMPORTS conf var is replaced by the 
Django INSTALLED_APPS

You run celery trough the manage.py of your project

$ python manage.py celeryd -l INFO -E
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django-celery settings.py

INSTALLED_APPS += ("djcelery", )
.
.
import djcelery
djcelery.setup_loader()
.
.
CELERYBEAT_SCHEDULER = "djcelery.schedulers.DatabaseScheduler"
.
.
#standard celery conf vars (Broker settings, concurrency ,...)
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django-celery schema
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django-celery
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django-celery
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Some little nice extensions
Execute tasks directly from the django admin interface
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Some little nice extensions
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Jamendo needs UNIQUE tasks
A task is unique when can run only one instance of it at the same time 
in the whole cloud

● Rational utilization of shared resources

● Atomic access to sensitive resources

Our idea:

● Define a list of UNIQUE tasks in settings.py

● If a lock is found define the behaviour retry or fail 

● Allow the possibility of define a task UNIQUE  on arguments (same 
task type with different arguments can run)

● Our solution : mongodb for write and release locks.

● Best solution: cache, virtual file system ?
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Unique tasks
UNIQUE_TASKS = { 
    "searchengines.solr.index": { "retry_on_lock": False, "lock_on_type": True, },
    "stats.album.rebuild": { "retry_on_lock": True, "lock_on_type": False, },  
}

On task start ( method __call__ )
self.taskConcurrency = None
if kwargs[“task_name”] in settings.UNIQUE_TASKS:
    self.taskConcurrency = TaskConcurrency(kwargs,
                                           args,
                                           settings.UNIQUE_TASKS\
                                           [kwargs[“task_name”]])
    if not self.taskConcurrency.canRun():
        if self.taskConcurrency.retry:
            self.incrementalRetry(Exception("Concurrency Exception"))
        else:
            raise Exception("Concurrency Exception")

On task end ( method after_return )

if self.taskConcurrency:
    self.taskConcurrency.__exit__()
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Celery logs

● The logger object is not unique, the same 
handler is added to different logs object

● Main Process logger, PoolWorker logger, 
TaskLogger

● The command logging.getLogger(“Celery”) give 
you back only the Main Process logger

● Extend logging features was a bit tricky until 
the last version
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Centralized logging
● We give a very little contribute to celery by adding the 

signal after_setup_logger and after_setup_task_logger  
(the name are self explanatory)

● after_setup_logger is triggered after the build of the Main 
Process logger and after the build of each PoolWorker 
logger

● The signals give you back a log object, in this way you can 
add additional handler for implement a centralized logging

● In our specific case we are sending the logs of all workers 
to a syslog server that store log lines in a separated file.
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Centralized logging

import logging
from celery.signals import after_setup_logger, after_setup_task_logger

def after_setup_logger_handler(sender=None, logger=None,
                               loglevel=None, logfile=None,
                               format=None, colorize=None,
                               **kwds):
    handler = logging.handlers.SysLogHandler(address=('syslogserver',
                                                       514))
    handler.setFormatter(logging.Formatter(format))
    handler.setLevel(logging.INFO) 
    logger.addHandler(handler)

after_setup_logger.connect(after_setup_logger_handler)
after_setup_task_logger.connect(after_setup_logger_handler)
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Thank you
http://www.celeryproject.org

QA

http://www.celeryproject.org/
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