
 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

1

Playing tasks with
Django & Celery

Mauro Rocco
@fireantology

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

2

About me

About Jamendo
● Jamendo is a community of free, legal and unlimited music published

under Creative Commons licenses

● Free Music for users

● Popularity and earnings for artists

● Music licensing and background music at competitive prices for
companies

● I'm a Web Developer

● Python, Javascript, PHP, Java/Android

● celery contributor (just one of the hundreds)

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

3

Jamendo needs
● Multi-format music encoding
● Statistics (downloads, listens, reviews, stars, fb

likes) on different units
● Music analysis trough external services
● Music qualification trough several sources
● Integration with third part services
● Common jobs (contract generations,

certifications, bills, search index update)

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

4

Celery

● Async & Sync processes
● Concurrency within a box
● Distributed (across machines)
● Scheduling (interval, cron, ...)
● Fault tolerant
● Subtask, Set of tasks
● Web monitoring (django-celery and others)

“Celery is an asynchronous task queue/job queue based on
distributed message passing. It is focused on real-time

operation, but supports scheduling as well”

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

5

AMPQ
The Advanced Message Queuing Protocol (AMQP) is an open standard application layer
protocol for Message Oriented Middleware.

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

6

Celery schema

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

7

Celery worker
● Is the celery process that execute the tasks
● Can serve one or multiple queues
● Have a max number of tasks that can be

executed at the same time
● Can be remotely controlled
● Have a great configuration option called

MAX_TASK_PER_CHILD

$
$ celeryd -l INFO -c 5 -Q queue1 -E

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

8

Celery worker

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

9

Defining a simple task
from celery.decorators import task

@task
def make_money(how_much):
 logger = make_money.get_logger()
 logger.info("Congratulation, you earned %s$" % how_much)
 if how_much>1000000:
 return "Bora Bora"
 return "Keep working"

>>> result = make_money.delay(200)
>>> result.get()
“Keep working”

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

10

Retrying a task if something fails
from celery.decorators import task

@task
def make_money_real_life(how_much, wife=True):
 try:
 logger = make_money.get_logger()
 if wife:
 raise Exception("Incompatibility exception")
 logger.info("Congratulation, you earned %s$" % how_much)
 if how_much>1000000:
 return "Bora Bora"
 return "Keep working"
 except Exception,exc:
 make_money_real_life.retry(exc=exc,
 countdown=60,
 args=[how_much,False])

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

11

Task set example

 def run(self, setid=None, subtasks=None, **kwargs):
 …
 if not setid or not subtasks:
 …
 tasks = []
 for slice in slices:
 tasks.append(uploadTrackSlice.subtask((slice,folder_name)))

 job = TaskSet(tasks=tasks)
 task_set_result = job.apply_async()
 setid = task_set_result.taskset_id
 subtasks = [result.task_id for result in task_set_result.subtasks]
 self.incrementalRetry("Result not ready", args=[setid,subtasks])

 #Is a retry than we just have to check the results
 tasks_result = TaskSetResult(setid, map(AsyncResult,subtasks))
 if not tasks_result.ready():
 self.incrementalRetry("Result not ready", args=[setid,subtasks])
 else:
 if tasks_result.successful():
 return tasks_result.join()
 else:
 raise Exception("Some of the tasks was failing")

Extract from a jamendo task that upload track metadata in xml format to an ftp server for
music analysis

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

12

The Jamendo Task class

class JamTask(Task):

 def __call__(self, *args, **kwargs):
 """This method is in charge of call the run method of the task"""
 self.max_retries = 30
 self.sandbox = SandBox(self.name, self.request.id,
 settings.PATH_SANDBOX, settings.DEBUG)
 self.taskLogger = TaskLogger(args, kwargs)
 self.taskLogger.__enter__()
 .
 .
 return self.run(*args, **kwargs)
 .
 .
 def after_return(self, status, retval, task_id, args, kwargs, einfo):
 """This method is called when the tasks end,
 on whatever return state"""
 self.taskLogger.__exit__(status, retval, args, kwargs, einfo)
 self.cleanTaskSandBox(status,kwargs)
 self.closeAllConnections()

The way for define common behaviour to all your tasks is to override __call__
and after_return methods of the celery Task class

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

13

Web Monitoring tools

● django-celery
https://github.com/ask/django-celery/

● celery-pylons
http://pypi.python.org/pypi/celery-pylons

● flask-celery
https://github.com/ask/flask-celery/

https://github.com/ask/django-celery/
http://pypi.python.org/pypi/celery-pylons
https://github.com/ask/flask-celery/

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

14

django-celery
Task scheduling and monitoring trough the Django admin

interface

● The celeryconf.py file is replaced by the django
settings

● The CELERY_IMPORTS conf var is replaced by the
Django INSTALLED_APPS

You run celery trough the manage.py of your project

$ python manage.py celeryd -l INFO -E

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

15

django-celery settings.py

INSTALLED_APPS += ("djcelery",)
.
.
import djcelery
djcelery.setup_loader()
.
.
CELERYBEAT_SCHEDULER = "djcelery.schedulers.DatabaseScheduler"
.
.
#standard celery conf vars (Broker settings, concurrency ,...)

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

16

django-celery schema

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

17

django-celery

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

18

django-celery

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

19

Some little nice extensions
Execute tasks directly from the django admin interface

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

20

Some little nice extensions

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

21

Jamendo needs UNIQUE tasks
A task is unique when can run only one instance of it at the same time
in the whole cloud

● Rational utilization of shared resources

● Atomic access to sensitive resources

Our idea:

● Define a list of UNIQUE tasks in settings.py

● If a lock is found define the behaviour retry or fail

● Allow the possibility of define a task UNIQUE on arguments (same
task type with different arguments can run)

● Our solution : mongodb for write and release locks.

● Best solution: cache, virtual file system ?

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

22

Unique tasks
UNIQUE_TASKS = {
 "searchengines.solr.index": { "retry_on_lock": False, "lock_on_type": True, },
 "stats.album.rebuild": { "retry_on_lock": True, "lock_on_type": False, },
}

On task start (method __call__)
self.taskConcurrency = None
if kwargs[“task_name”] in settings.UNIQUE_TASKS:
 self.taskConcurrency = TaskConcurrency(kwargs,
 args,
 settings.UNIQUE_TASKS\
 [kwargs[“task_name”]])
 if not self.taskConcurrency.canRun():
 if self.taskConcurrency.retry:
 self.incrementalRetry(Exception("Concurrency Exception"))
 else:
 raise Exception("Concurrency Exception")

On task end (method after_return)

if self.taskConcurrency:
 self.taskConcurrency.__exit__()

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

23

Celery logs

● The logger object is not unique, the same
handler is added to different logs object

● Main Process logger, PoolWorker logger,
TaskLogger

● The command logging.getLogger(“Celery”) give
you back only the Main Process logger

● Extend logging features was a bit tricky until
the last version

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

24

Centralized logging
● We give a very little contribute to celery by adding the

signal after_setup_logger and after_setup_task_logger
(the name are self explanatory)

● after_setup_logger is triggered after the build of the Main
Process logger and after the build of each PoolWorker
logger

● The signals give you back a log object, in this way you can
add additional handler for implement a centralized logging

● In our specific case we are sending the logs of all workers
to a syslog server that store log lines in a separated file.

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

25

Centralized logging

import logging
from celery.signals import after_setup_logger, after_setup_task_logger

def after_setup_logger_handler(sender=None, logger=None,
 loglevel=None, logfile=None,
 format=None, colorize=None,
 **kwds):
 handler = logging.handlers.SysLogHandler(address=('syslogserver',
 514))
 handler.setFormatter(logging.Formatter(format))
 handler.setLevel(logging.INFO)
 logger.addHandler(handler)

after_setup_logger.connect(after_setup_logger_handler)
after_setup_task_logger.connect(after_setup_logger_handler)

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

26

Thank you
http://www.celeryproject.org

QA

http://www.celeryproject.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

