

MiG – A Complete Grid
Middleware (mostly) in Python

Jonas Bardino
<bardino@nbi.ku.dk>

University of Copenhagen
E-Science

The Grid

• ’Internet’ mainly allows access to separate
information, resources

• The Grid should provide unified access to
any desired resource
– Processing
– Storage
– Applications
– People

• Sharing, collaboration
– Virtual organizations

http://images.google.com/imgres?imgurl=www.research.ibm.com/visualanalysis/application.jpg&imgrefurl=http://www.research.ibm.com/visualanalysis/biology.html&h=761&w=767&sz=86&tbnid=G_yvBR_bMNUJ:&tbnh=139&tbnw=140&prev=/images%3Fq%3Dapplication%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8
http://images.google.com/imgres?imgurl=www.digidome.nl/images/Cray-1-Supercomputer-1976-2.jpg&imgrefurl=http://www.digidome.nl/history_of_computing.htm&h=300&w=300&sz=8&tbnid=HjYO6gaXItIJ:&tbnh=111&tbnw=111&prev=/images%3Fq%3Dsupercomputer%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8
http://images.google.com/imgres?imgurl=www.cacr.caltech.edu/News/silo0401/walls.gif&imgrefurl=http://www.cacr.caltech.edu/News/silo0401/&h=295&w=250&sz=13&tbnid=kdv19saOM-QJ:&tbnh=110&tbnw=94&prev=/images%3Fq%3Dtape%2Bsilo%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8

Problems in Classic Grid Models?
(not every problem in every middleware)

• Single point of failure
• Lack of scheduling
• Poor scalability
• No means of implementing privacy
• No means of utilizing ‘cycle-scavenging’
• Firewall dependencies
• Highly bloated middleware
• Cumbersome user collaboration
• Steep learning curve
• Ad-hoc application access

User

User

User

User

GIIS
Resource

Resource

Resource

Resource

Resource

Resource

Minimum intrusion Grid - Idea

• Address 1st gen. problems
● GRID should be a system

● not just a protocol
● servers that are GRID
● coordinated upgrade

● Users and resources do not have to
maintain anything

● Appears as big virtual computer to users
● Appears as group of users to resources

GRID

GRID

GRID

User

User

User

User
Resource

Resource

Resource

Resource

Resource

Resource

Why is GRID Needed?

• Science & business go virtual
– A lot of areas turn to computer simulations
– More, bigger and cheaper experiments
– Data mining

• Computer power is consolidated in data
centres
– Avoid user maintenance

– Better utilization → cheaper

– Users need easy access
– Providers need access control

MiG Rules

i. Nothing produced by MiG can be required to
be installed on either the resource or client
end

ii. Everything within MiG must be implemented
in Python unless another language is
absolutely required

iii. Any design and implementation decision
must optimize towards transparency for the
users

iv. Anything that is not right must be thrown
away

MiG requirements - User

• Users don't need to install Grid software
● A web-browser is enough
● X.509 certificate for identification/access

• Optional advanced interfaces
● User scripts
● Client APIs
● Remote file system
● Native clients

User view of MiG

MiG Requirements - Resource

• Resources don't need to install Grid
software
● Only create MiG user(s)
● Provide limited remote access

● ssh inbound
● https outbound

● System administrators use ordinary X.509
user certificates to manage resources

● Sandboxed systems have even fewer
requirements

Resource Owner View of MiG

Files

• Private user home on MiG
• All file refs are relative to user home

File Editor

Jobs

• The Grid work unit is jobs
– Typically batch command(s)
– Including resource specs
– User input/output files

• Users send jobs to MiG queue
– Replication (if enabled)
– Execution when a suitable resource is ready
– All job handling is done by MiG
– User may override jobs: hold, cancel, resubmit

• Grid apps typically wrap jobs to create flow

Submit Job

Job Status

Job Result

Runtime Environments

•Resource and user 'contract'
● without them almost nothing is guaranteed
● used to negotiate apps and libs in a generic fashion
● anyone can define them, but only resource owners

can specify which ones they implement and how
● no spec update is possible, always create new

●Examples
● PYTHON-2 (any Python 2.X interpreter)

● resource owner specifies PYTHON=/path/to/python
● user knows that $PYTHON contains actual path in job

● Local files, devices or markers

•Managed by resource owners (users)

Viewing Runtime Environments

Inspect Runtime Environment

Python Job using Runtime Env

VGrids

• VGrids are Virtual Organizations in MiG
• Straight forward collaboration

● Share files
● Share resources
● Private web page / portal
● Public web page / portal
● Private Wikis
● Private SCM repositories
● Private Forum

● Completely user managed

MoinMoin

View VGrids

...List continues...

Manage VGrids

VGrid Private Homepage

VGrid Public Homepage

VGrid Private Wiki

VGrid Private SCM Repository

VGrid Private Forum

VGrid Monitor

Resource Models

• Conventional resources
● Like all other Grid systems, only easier
● Basic user accounts with (restricted) ssh access from MiG servers
● Compute and external storage nodes

● MiG-SSS
● A very powerful screensaver
● Virtualised minimal Linux distro

● PS3-live
● Minimal Linux Live CD for PlayStation3

● One-Click
● The simplest possible way to contribute
● Web page with java applet

MiG-SSS

• The Cell CPU
• a multi-core microprocessor (9 cores)
• Basically a (1 master)/(8 node) cluster on a chip

• PS3 version only enables 6 of the nodes (SPE's)

• 200+ GFlops (SP) @ 3.2 GHz
• 20+ Gflops (DP) @ 3.2 Ghz
• A lot of PS3's are available
• Linux Live CD puts PS3’s on MiG

PlayStation 3

Managing Resources

Resource Administration

• Multiple cloudy 'Cloud' definitions
– Software as a Service

• Web services/apps
– SalesForce, Google/Apple/Microsoft/... web apps, ...

– Platform as a Service
• Software stack

– Google App Engine, Microsoft Azure, ...

– Infrastructure as a Service
• Virtualized hosting:

– Amazon EC2, RackSpace, …

The Cloud

GRID vs. Cloud Computing

• The fall of Grid computing in general
– Started out with grand unified top-down vision
– Gradually lowered ambitions for reliability and

ease of management: 'job shop'
– Still requires expertise to use: few 'elite' users

• The rise of Cloud computing (IaaS)
– Bottom up solutions to different isolated

problems
– Subsets of Grid vision: no collaboration!
– Isolated resource sharing at best
– Self service solutions require expertise to use

Reviving Grid Ambitions

• We can deliver original Grid promises
– Share compute, storage, ... resources

• Including PRC resources

– Preserving transparency and ease of use
– Collaboration platform

• Communication, share files, work flow

• Cloud inspiration?
– Better software sharing
– Application platform (Saas/PaaS)
– Virtual machines (IaaS)

?

Better Software Sharing

• Use runtime envs
– Native apps controlled by admins
– On-demand apps controlled by users

• Central software repository
• ZeroInstall for on-demand apps

– Dynamic deployment
– Dependency handling
– Isolation and secure sharing
– User controlled use

Software Repository

Application Platforms (VGrids)

• Matlab workflow example

Virtual Machines

SSHFS Remote File Access

Graphical Access

• Interactive jobs
• VNC display on server

– anonymous display at MiG servers

• User: https+cert+java client
• Resource: X forwarding to server display
• Interactive job extras

– start VNC display
– redirect user to display

MiG Core Components

• Web server
– WSGI
– CGI
– XMLRPC

• MiG Daemons
– Job manager
– Monitor
– IM notifier
– SFTP daemon
– SSH multiplexing

Web Server

• Multiple front ends to functional
backends
– Input handler parses/validates

request to dictionary
– Backend called with input

dictionary, and it interacts file
system (pickle) and daemons

– Backend return list of nested
dictionaries

– Requested output handler
translates it to string

Input handler

X
M

L
R

P
C

C
G

I

W
S

G
I

Functional back end

Output handler

H
T

M
L

X
M

L
R

P
C

JS
O

N

T
E

X
T

P
ickle

Dictionary

List of dictionaries

F
IL

E

External Components

• MoinMoin WikiWiki
– CGI based isolated installation in VGrid dir

• Mercurial SCM
– CGI based isolated installation in VGrid dir
– Client access with user certificate

• (Extended) Forest Board Forum
– Messages and status files in VGrid dir

• Enchant, JSON and Paramiko
– Integrated module calls

• ZeroInstall software deployment

SFTP Server

• Extended Paramiko SFTP example
– Validate SSH public key
– Map key to MiG user for user home
– Filter requests

• 'chroot' to user home, except vgrid shares
• Restricted files
• No symlinks
• No access changes (chmod)

• Users can use sftp client to access MiG home

• Users can use sshfs to locally mount MiG home

Under the Hood: Job Flow

1. User submits job to the MiG server (HTTPS and certificate)
2. Resource requests a new job to execute (HTTPS)
3. The MiG server schedules a job and creates the job script.
4. MiG server sends the job to the resource using SCP.
5. The resource starts the job script.
6. Resource pulls the inputfiles from the MiG server (HTTPS)
7. The actual job commands are executed
8. Resource sends outputfiles to the MiG server (HTTPS)
9. MiG server cleans up the resource using SSH
10. User retrieves job results eventually (HTTPS and certificate)

MiG
Server

User Resource

1 2
3 4

56
7

8
910

Under the Hood: Resource Run

1.Resource owner starts resource through MiG server (HTTPS)
2.MiG server creates resource scripts from conf (w. Session ID)
3.MiG server copies FE and EXE scripts to resource using SCP
4.MiG server launches both scripts on resource using SSH
5.FE script loops: gateway to MiG server (HTTPS+Session ID)
6.Exe script pulls job with input/executable files through FE
7.Exe script executes job
8.Exe script sends result with output files through FE
9.Result or timeout on MiG server triggers clean up and launch
of new EXE script on resource … repeat from (6) ...

MiG
Server

Owner

Resource

1
2

5

3

6
4

7
8 8

6

9

Security and Access Control

• MiG daemons run as one unprivileged user
– User homes are in same account

• prevent illegal directory traversal

• Symlinks from VGrid shares to user homes
– Prevent symlink creation/modification

• Resource access without certificate
– Random Session IDs

• Cross Site Scripting / Request Forgery
– Strictly validate all input and output
– Require HTTP POST in modifying interfaces

Python Advantages

• Extremely fast development
• Standard library and extensions for

everything
• More functionality in fewer lines of code

• 50K lines (SLOC) in MiG
• 1M+ lines in comparable middlewares

• Quality of code / Maintenance
• Dictionaries, pickle for lightweight DB's
• Flexible output formatting

Pure Python?

• Apache: HTTPSServer, Django, Zope, …
• OpenSSH ssh/scp to resource: Paramiko
• cURL with client certs: urllib, pyopenssl,

pycurl
• IRC Notify: libpurple or dbus+pidgin
• HTML formatting: Mako, Clearsilver, …
• Manual JQuery javascripting: pyjamas
• Bash scripts: python equivs
• Daemons: TCPSocketServer, ...

Python Problems / Limitations

• Apache
– Scalability, TLS/SSL, URL rewrite

• cURL
– Limited native SSL client certificate support

• IRC Notify
– python-purple has rough edges

• Manual JQuery javascripting
– Pyjamas is still experimental

• Bash resource scripts
– Python world domination still getting closer :o)

MiG Conclusions

• MiG is 'feature complete'
• Easy to use, transparency

– users / resource owners
• Flexible resource sharing

– Dedicated, PRC and IaaS style

• Dynamic collaboration tools
• Application platform
• Dynamic software deployment
• Outstanding issues

– Beyond 'research' project

– server distribution performance

Further Information

www.migrid.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

