
Meteorology and Python

Claude Gibert,
Europython 2011

desperately trying to forget
technical details

Background

  Meteorology - NWP – Numerical Weather Prediction
  ECMWF – European Centre for Medium-Range Weather

Forecasts.
  GMAO – Global Modelling and Assimilation Office at

NASA. Run a numerical forecast to calibrate satellite
sensors.

  Atmospheric models running from initial conditions: the
analysis – optimisation function – observations

  Forecast verification – statistics computed against the
verifying analysis and observations

  Observation statistics – monitoring of observing systems

History

  It all started in 2004.

  Design a forecast verification package:

1)  offer an interface which doesn’t require programming, but can
be used in batch processing

2)  retrieve raw data from the archive
3)  compute statistics
4)  store statistics
5)  extract and display statistics (plots)

Thoughts (1)

  offer an interface which doesn’t require programming, but
can be used in batch processing:
•  this called for a “descriptive” language which could have been

anything from XML to a “home made” syntax
•  I have always been against proprietary languages which

proliferated. Good examples of scientific software were grads,
matlab, IDL, pvwave. Not a good idea.

•  There was an interface for accessing the archive which was
request based:

retrieve,!
 param = T,!
 level = 500/850,!
 type = forecast,!
 expver = 0001	

Thoughts (2)

  retrieving raw data is difficult:
•  interface the multiple PB archive and handle its complexity
•  interface data decoding libraries (Fortran and C) to decode the

data from the archive, two main formats
•  have sufficient knowledge of meteorological parameters to derive

some of them from others which are in the archive.

  compute statistics: this is relatively trivial, but it is the
stage preceding the computing which requires the most
attention:
•  to pair and possibly aggregate data correctly
•  this means associating the right forecast with the right reference

or the observations from a same observing system together.

Thoughts (3)

  store statistics. The example of the “retrieve” request
shows few parameters, in fact there are probably 15
different ones for each statistic. This is a typical
meteorological archive, the size of the metadata is about
20 times the size of the data.

  A SQL database was used although I have now been
looking at Non-SQL databases. This is out of the scope
of this presentation.

retrieve,!
 param = T,!
 level = 500/850,!
 type = forecast,!
 expver = 0001	

Thoughts (4)

  extract and display (plot) statistics. A flexible system
should offer a decent choice of plots, but the user should
have very good control over them:
•  choice of bars, curves etc…
•  way of grouping curves based on metadata
•  ways of organising plots
•  control over titles and legends

Decisions (1)

  this package was going to do what most people in the
organisation already did in separate programs and
languages (Fortran and C) for many different purposes:
•  access the archive
•  decode data
•  identify data
•  post-process data
•  pair data if applicable
•  compute
•  store / plot

  at best the code reuse was “copy-and-paste”

Choices (1)

  it made sense to develop a framework first and then build
the verification package with it:
•  hopefully if users invested in the framework, a common tool

would simplify maintenance and development efforts
•  the ultimate goal of developing an application would be met
•  offers a platform for new developments

  the question was: in which language should this be
done?

Choices (2)

  I needed a language which would be easy to interface
with C, C++ and possibly Fortran. I also needed to glue
different libraries together.

  Then I learnt Python in 1 day using “Dive into Python”,
and actually tried it.

Purpose of the talk

  I am going to describe how the language for the user was
developed to be both:
•  an efficient way of conveying information to the application, let’s

be modest, a “fancy” argument system
•  a way of supporting the developer, by guaranteeing the validity of

the input and configuration defaults.

  I would like to show how the definition of the concept of a
directive can contribute to the creation of complex
requests for a plotting system.

The language
  Using the Python interpreter for the interface was the best option to

insert custom code. I went back to:

  this is called a Directive

retrieve,!
 param = T,!
 level = 500/850,!
 type = forecast,!
 expver = 0001	

retrieve(!
 param = 'T',!
 level = [500,850],!
 type = 'forecast',!
 expver = '0001'!
)!

this could easily be mapped to:

The directive
  Directives are basically Python dictionaries to which semantics are

added, to help both the programmer and the user:
•  list of valid keywords (dictionary keys)

{!
 "directive": "store",!
 "keywords": {!
 "name": {!
 },!
 "age": {!
 },!
 "nationality": {!
 }!
 }!
}

Why dictionaries? Because they are part of the core of Python and they make it
awesome.

observation = {!
'directive': 'obsidentifier',!
'keywords' : {!
 'date': { 'type’: int },!
 'domain_name': {!
 'alias': ['domain'],!
 'default_value': ['global’]!
 },!
 'variable': {!
 },!
 'level': {!
 'alias': 'channel',!
 'type’: float,!
 'optional': True!
 },!
 'type': {!
 'validate': ['ValidateChoice','ob','im'],!
 'default_value': 'ob’,!
 ‘unique’: True!
 },!
 ‘kt’: { ‘type’: int, },!
 ‘kx’: { ‘type’: int, }!
 }!
}

class Observation(Directive):!

 def __init__(self,*args,**kwargs):!
 super(Observation,self).__init__(*args,**kwargs)!
 self.checkLanguage()!

 def languageReader(self):!
 return DirectiveReader()

observation = {!
'directive': 'obsidentifier',!
'keywords' : {!
 'date': { 'type’: int },!
 'domain_name': {!
 'alias': ['domain'],!
 'default_value': ['global’]!
 },!
 'variable': {!
 },!
 'level': {!
 'alias': 'channel',!
 'type’: float,!
 'optional': True!
 },!
 'type': {!
 'validate': ['ValidateChoice','ob','im'],!
 'default_value': 'ob’,!
 ‘unique’: True!
 },!
 ‘kt’: { ‘type’: int, },!
 ‘kx’: { ‘type’: int, }!
 }!
}

print Observation()!
…!
In directive observation:!
Keyword variable is missing and is required!
Keyword kt is missing and is required!
Keyword date is missing and is required!
Keyword kx is missing and is required!

print Observation(!
 variable = 'omf',!
 kt = [4,5],!
 kx = 220,!
 type = [‘ob’],!
 date = 2011020312,!
 domain = [‘europe’]!
)!
…!
observation:!
 domain_name = [’europe']!
 variable = ['omf']!
 kt = [4, 5]!
 date = [2011020312]!
 kx = [220]!
 type = ob!
…!
type = ‘wrong’, !
…!
In directive observation:!
Validation error for keyword type. The value: 'wrong'

is not in the set: ob, im!

Argument checking
  As the directive system is defined here, it can be useful to format arguments

to methods, either for the lifetime of the application or only at debug stage:
from checkargs import checkArgs!

checkArgs.register('__call__',dict(!
 directive = '__call__',!
 keywords = dict(!
 a = dict(unique = True),!
 b = dict(alias = 'd', optional = True),!
 c = dict(default_value = '12', type = int))!
)!
)!

class MyClass(object):!

 @checkArgs!
 def __call__(self,*args,**kwargs):!
 return kwargs!

print MyClass()(a = [12],d = 10)

{'a': 12, 'c': [12], 'b': [10]}!

Directive
  Defining semantics for a directive is like working at class level when writing

code. Just the same way, inheritance and specialisation are available for
directive definition:

surface_observation = {!
'directive': 'surface_observation',!
‘inherit_from’: ‘observation’,!
'keywords' : {!
 ’level': { ’default_value’: 0 },!
 ‘station_height’: { ‘unique’ : True }!
 }!
}

  Class inheritance is not required to mimic inheritance in directive definition.
  Multiple inheritance is supported.

Directive: specialisation
observation = {!
'directive': 'obsidentifier',!
‘specialise_from’: {!
 ‘type == “im”’: ‘impact’,!
 ‘type == “ob”’: ‘rawobs’,!
} !
'keywords' : {!
 'type': {!
 'validate': ['ValidateChoice','ob','im'],!
 'default_value': 'ob’,!
 ‘unique’: True!
 },!
 etc…!
 }!
}!
{!
 "directive": "impact",!
 "keywords" : {!
 "variable": {!
 "default_value": "xvec"!
 }!
 }!
}!

Directive behaviour
  An object instance from a class inheriting from Directive can also inherit from

other instances. This is some way of merging dictionaries with different
flavours.

  child.inherit_from(parent): assign to child all keys from parent which:
•  are defined in its language and

•  are not defined in child or
•  are a default value in child and not in parent

  child.overwrite_from(parent):assign to child all keys from parent which:
•  are defined in its language and

•  are not defined in child or
•  are a default value in child

  recursively
  __setitem__ is overloaded to keep track of default values and language.

Plotting
  Plotting is not simple and it seems that it has always more or less

been a “semi-manual” process. Even when the graphics software
provides good support (e.g. matlab, matplolib) the user normally
specifies manually:
•  the data for each curve,
•  the legends,
•  the title

  Most graphical packages do not provide sufficient support for
automatic plotting, trying to figure out what to use, and are probably
not sufficiently object orientated, for example:
•  xaxis, yaxis methods, plot_date etc…
•  there is always a way around but the good stuff is hardcoded

Plotting
  However, knowing the data to be plotted is normally the biggest

problem. Observations have the following attributes:
•  kt
•  kx
•  level
•  domain_name
•  date
•  statistic

  How can we specify that we want n curves, each of them is one
combination of kt, kx, level and we want a different domain for each
plot?

  How can we specify that we want n curves, each of them is one
combination of kt, kx, domain and we want a different level for each
plot?

Document – Plot – Curve Model
  Each directive inherits from observation:

•  a document object contains:
•  attributes related to graphics
•  attributes related to layout and output
•  attributes related to the data being plotted
•  possibly title information
•  a list of plot objects

•  a plot object contains
•  attributes related to graphics
•  attributes related to the data being plotted
•  title information
•  a list of curve objects

•  a curve object contains:
•  attributes related to graphics
•  attributes related to the data being plotted
•  legend information

d = obsdocument(!
 plot = [!
 timeseriesplot(!
 date = Dates(2011030100,2011033100,24),!

 curve = line(!
 kx = [120,220,221,132,229,232],!
 kt = [4,5,11,44]!
)!
),!
],!
 type = 'im',!
 level = 1000,!
 statistic = 'rate',!
 domain = ['global','n.hem’],!
 layout = [1,2]!
}

d = obsdocument(!
 plot = [!
 timeseriesplot(!
 date = Dates(2011030100,2011033100,24),!
 domain = ['global','n.hem’],!
 curve = line(!
 kx = [120,220,221,132,229,232],!
 kt = [4,5,11,44]!
)!
),!
],!
 type = 'im',!
 level = 1000,!
 statistic = 'rate',!

 layout = [1,2]!
}

d = obsdocument(!
 plot = [!
 timeseriesplot(!
 date = Dates(2011030100,2011033100,24),!
 domain = [‘s.hem’,’tropics’],!
 kx = [120,220,221,132,229,232],!
 kt = [4,5,11,44],!
 curve = [!
 line(!
 domain = 'global',!
 graphics = graphics(color = 'black’)!
),!
 bar(became bar!
 domain = 'n.hem',!
 graphics = graphics(color = 'green’)!
),!
],!
 yaxis = axis(!
 min = -0.035,!
 max = 0.015!
),!
),!
],!
 type = 'im',!
 level = 1000,!
 statistic = 'rate',!
)!

d = obsdocument(!
 plot = [!
 timeseriesplot(!
 date = Dates(2011030100,2011033100,24),!
 domain = ['global','n.hem'],!
 curve = bar(# <-- was line became bar!
 kx = [120,220,221,132,229,232],!
 kt = [4,5,11,44]!
)!
),!
],!
 type = 'im',!
 level = 1000,!
 statistic = 'rate',!
)!

 "_combinable": {!
 "default_value": [!
 "domain_name",!
 "statistic”,!
 "level”!
]!
 },!
 "_index": {!
 "default_value": "date”!
}!

d = obsdocument(!
 plot = [!
 verticalxsection(!
 statistic = 'rate',!
 level = levels,!
 domain = [‘n.hem’,’s.hem’]!
 curve = [!
 line(!
 kx = 220,!
 kt = [4,5],!
 date = Dates(2010090100,2010103100,24),!
),!

! !],!
),!
],!
 type = 'im',!

!domain = 'global',!
)!

 "_combinable": {!
 "default_value” [!
 "domain_name",!
 "statistic”!
]!
},!
 "_index": {!
 "default_value": ”level”!
}!

Gallery

Gallery

Conclusion

  The directive helps the user in specifying values, a ‘help’
key can be added in the definition file. The syntax is quite
simple and no programming is required. However, for
some keywords, callables can be specified.

  The directive helps the programmer in the sense that it
guarantees that the values of a dictionary are formatted
according to specifications (lower case, lists etc…)

Score computation
User’s directive

Data
source

File

Data
decoder

Compute
engine

Meta data
and
Data

Mars, ECFS,
local files

GRIB,
BUFR,

NetCDF,
ODB

Hooks

Ensemble maker,
Time averaging,

Selection of observations

User defined

Computation of
scores

User defined

Data storer

User defined

Database
retriever

Hooks

Ensemble mean,
Ensemble spread,

Parameters,
Sea mask,

Observation validation

User defined

