Making CPython Fast With
Trace-Based Optimisations

Mark Shannon

Who Am [?

Mark Shannon

Recently completed PhD @ Glasgow University

- “Construction of High-Performance
Virtual Machines for Dynamic Languages”

- HotPy = HotPy Optimising Tracing Python
Interested in all aspects of Virtual Machines
Especially VMs for Dynamic Languages

This Talk

CPython — What it Is, why it Is Important
Tracing — How and why it works
Problems of tracing in Python

Solving these problems, by dropping to a lower
level

Optimising Traces
- Specialisation and Deferred Object Creation

Other Issues (depending on time available)
Conclusions

CPython VM

Default Python implementation

Over 20 years old; has evolved with the Python
language

Based on 1980s technology

| want to bring CPython into the 21* century
No change to language

No change to C API

Why CPython?
(Why not just use PyPy?)

 CPython has many C extensions
- Numpy, scipy

 CPython can be embedded in other
applications

- Blender
 Runs on many platforms

What Is Tracing?

» Several meanings, but in this context it means:

* Monitor the execution of the program until a
“*hot” point Is found

 Record the execution of the hot traces in the
program (Traces may cross function calls)

* Optimise the recorded traces and save In a
trace cache

* When the same part of the program is next
executed, the optimised trace Is executed
iInstead of the original bytecode.

Modifying CPython for Tracing

Separate VM from hardware-machine

- CPython makes a C call for each Python call

— Calls to Python code should stay within the
interpreter, not call into C code

Break calls into prepare/call pair:

- Prepare = create new frame, fill in parameters, etc.

- Call = save return address, and jump to start of
function

Prepare part can call out to C code
Call part stays within interpreter

Managing Traces

Maintain a cache of traces.

Each trace has a hothess

trace.hotness += 1; when a trace iIs executed

trace.hotness *= 0.7/5 every Tms.

- Set T experimentally (probably 200 to 500ms)
Two thresholds: warm & cold.

If
If

notness > warm then add new trace to cache

notness < cold then evict trace from cache

Optimising Traces

* \WWant to use bytecode both as input and output

* Allows optimisations to be tested Inc

 Can develop optimisers incremental

* Important optimisations:
- Specialisation

ependently
V.

- Escape analysis/Deferred object allocation

- Compilation (Removal of interpretive overhead)

Problems with Tracing Bytecode

* Too high level
- Each bytecode does too much, hard to optimise
* Not atomic

- Can observe VM state during the execution of the
bytecode

- VM state includes internal state of interpreter
- Impossible to record trace

10

Lower-Level Bytecodes

* WIll need to add new bytecodes.

e These

e Specia

oytecodes are only used internally.

Ised forms of bytecodes:

- Integer & floating-point arithmetic

- Bytecodes for directly calling C functions
* Building-blocks for Python semantics:

- Creating and initialising frames

- Finding attributes in class and object dicts

11

oN
—

-Python Abstract Machine

Sub

SPAM

* Lower level instructions than CPython

» All CPython bytecodes can be implemented in
SPAM instructions.

* Higher level than the hardware, includes
Instructions for core operations in Python:

- Load/store in object dictionary
- Load from class (and super-classes') dictionary

- Python-aware call primitive
e All SPAM instructions are atomic.

13

SPAM Instructions

e SPAM Includes low-level instructions:

- ladd, fadd
- native_call

* And special instructions to support Python
semantics:

- load_special or _goto
- class_of

- from_dict_or_goto

- swap_exception_state

14

Tracing with SPAM

Record CPython bytecode for common cases
Otherwise drop to SPAM level.

Example BINARY _ADD

- Record BINARY_ADD for int, float, etc.
— Trace call to SPAM code for add otherwise.

SPAM equivalents for all CPython bytecodes
- One-to-one equivalence for simple bytecodes

15

SPAM equivalents

LOAD ATTR =
load_special or goto' getattribute ', impossible
name
CALL FUNCTION1 O

e Dispatches to object. getattribute

 CPython does this in C:

- C Is opague and cannot be optimised
- SPAM code Is transparent and optimisable.

16

SPAM functions (1)

BINARY SUBSCR =
LOAD _ CONST binary_subscr_function
ROT THREE
CALL FUNCTION 2 O

17

SPAM functions (2)

def binary subscr_function:
oad frame O
oad _special or goto' getitem_ ', error
oad frame 1
CALL FUNCTION1 O
RETURN_ VALUE
error:
load_constant not_subscriptable_error
load frame O
CALL FUNCTION1 O

RETURN_ VALUE

18

The Main Trace-Based
Optimisations
e Specialisation

- Customise code for the observed types of
variables.

» Deferred Object Creation

- Don't create objects until the last possible moment,
can avoid creating a lot of objects altogether

 Compilation
- Remove Iinterpretative overhead
- Ouputs machine code

19

Optimiser Chain

Bytecode Trace
+ Recorded Values

Specialiser

'

[Bytecode Trace)

Deterred Object Creation

'

(Bytecode Tracej

Cleanup

'

(Bytecode Trace)

20

Specialisation

Customise the trace for expected types.

For each bytecode:

- Ensure type of objects Is as expected
- Replace bytecode with faster equivalent
- Update type information

Use guards to ensure types are expected

Can replace slow bytecodes with fast ones
- BINARY_ADD - int_add

21

Guards

 Inline Guards
- Extra bytecodes inserted into the trace
* Out-of-Line Guards

- Extra code Is added elsewhere to invalidate trace If
asumptions are violated.

- Example: To guard against a class attribute
changing, add code to type. setattr

22

Deferred Object Creation

» Defer the creation of objects for as long as
possible

« Can often defer creation for ever, as the objects
are never needed

« Common for objects created to pass
parameters and in loops

23

Deferred Object Creation (2)

e Maintain shadow stacks

* 3 iIndependent shadow stacks:

- Shadow data stack
- Shadow frame stack

- Shadow exception-handling stack

* Only when an object on a stack Is actually
needed are the instructions to create it emitted

24

Specialisation and D.O.C. Example

« Calling a simple function, that returns its only
parameter

« E.g. The _iter _ method of any iterator

def iter (self):
return self

it=x. iter ()

25

Starting Trace

_LOAD FAST 2 (X)

oad special ' iter

BUILD PARAMETERS 0 O
prepare_bm call # bm, t, d -> f, (self,)+t, d
func_check 2 iId(x.__iter)

MAKE_ FRAME

INIT_FRAME

LOAD FAST O (self)

RETURN_VALUE

Specialisation (1)

LOAD FAST 2 (X)
load_special ' iter
- Ensure type of x (A guard may need to be inserted)

- Add out-of-line guards to protect against redefinition
of Iter

- Replace with 'bind' instruction to create bound-
method

BUILD PARAMETERS 0 O
prepare_bm_call

27

Specialisation (2)

func_check 2 1d(X.__iter)
- Due to guards inserted earlier, this can be removed
MAKE FRAME

INIT_FRAME

LOAD_ FAST 0 (self)
- Guaranteed to be defined, replace with 'load_frame'
POP_ FRAME

28

Specialiser Output

LOAD FAST 2 (x)

ensure_type 1d(X)

bind 1d(X._ _iter_)

BUILD PARAMETERS 0 O

prepare _bm_call

MAKE_ FRAME

INIT_FRAME

LOAD _ FAST 0 (self)

POP_FRAME »

Specialiser

 Makes traces faster
« Small reduction in number of bytecodes

» Specialised bytecodes are faster than the ones
they replaced.

30

Deferred Object Creation (1)

« LOAD FAST 2 (X)

- Defer load. Push local[2] (x) to shadow data stack
e bind I1d(X. _iter)

- Pop local[2] from shadow data stack

- Push bound-method (local[2], X. iter) to
shadow data stack

« BUILD _PARAMETERS O O

- Push empty-tuple () and empty-dict {} to shadow
stack

31

D.O.C. (2)

* prepare_bm_call

- Pop all three values from shadow data stack and
rearrange: bm(local[2], X.__iter__), (), {} =>
X.__Iter, (locall2],), {}

 MAKE_FRAME

- Examine callable on data stack (X. iter)
- Push a new frame to the shadow frame stack.

32

D.O.C. (3)

* INIT_FRAME

- Pop all 3 values from the data stack
- Initialise shadow frame from values:
- shadow_frame(deferred_local[0] = local[2])

« LOAD FAST 0 (self)
- Push local[2] (deferred _local[0] == local[2])

« POP_FRAME
— Discard deferred frame

33

D.O.C. (4)

So far have emitted zero instructions.

If trace ends, must materialise the stack:
- Emit on bytecode: LOAD FAST 2
Converted nine bytecodes to one!

Contrived example, but D.O.C. can often
reduce the size of code by 50% or more.

34

Cleanup

 D.O.C Is very aggressive, and can introduce
guite a lot of stores and loads.

* Tidy up afterwards
 Remove store/load pairs, etc.

35

Compilation

* Final (optional) stage
 Add third level of “hotness”, hot.

 When trace becomes hot, then compile It.

e Translate traces to machine-code.

* Previous passes have lowered the level of the
traces; mainly loads/stores and primitive ops.

* Translation to machine code is straight-forward
e Use LLVM, libJIT, nanoJIT, roll-your-own...

36

How Much Faster?

It depends:

— If your code spends 90% of its time doing /O it
won't make any difference.

Estimates based on my HotPy VM

For computational Python, very roughly:

- Interpreter only x3
- With compilation x10

For Web stuff — | don't know

37

Other Issues

Garbage Collection

Reimplementing the dict for optimisation
Enhancing the builtin function type

Object Representation (Tagging of values)

38

Garbage Collection

Reference counting is garbage collection
CPython can keep ref-counting for extensions

Use “tracing” GC for internal objects

— Much faster allocation
- Less overhead
- May Induce slightly longer pauses

Or use “tracing” for stack and locals only

- Gain some performance benefit
- Smaller changes required

39

Reimplementing dict

 dict is heavily optimised for general case

* Three categories of dict usage.

- Global/module variable lookup
— Object attribute lookup
- Explicit dictionary use

» Specialisation removes dict lookup for globals

Reduce memory use by sharing keys

—ast as slot access to object attributes

40

Reimplementing dict (2)

values keys

Pt

Reimplementing dict (3)

values keys

o= “cheeses”

e ensure(x.values.keys == keys)
 load_slot(x.values, offsetof(cheeses))

Enhancing builtin function

Currently (at least) four different types
Refactor into two types

- functions and unbound methods
Generalise the allowed parameter formats

Add parameter type information

- VM should guarantee that parameters are correct
- Faster (optimisation can eliminate checks)
- Simpler, checks in one place only (DRY principle)

43

Object Representation

Reduce header size
- Saturating ref-count, type as integer ID.

agging

- Take a few bits out of word for type information

- Fits almost all ints into pointer (no need for boxing)
- Can even do the same for floats on 64 bit machine

Embed type-id in pointer (this is a bit extreme!)

Evaluation required — May get slower or faster

44

Conclusion

CPython can be modified to support tracing

Tracing allows powerful optimisations

- Specialisation

- Deferred Object Creation

Can be made faster and remain portable
- Optimised Traces can be interpreted quickly
Compilation will make it even faster

45

Thank You For Listening

Any Questions?

For more info about the experimental platform
and the optimisations:

www.hotpy.org
Or search for “HotPy”

46

http://www.hotpy.org/

