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Who Am [?

Mark Shannon

Recently completed PhD @ Glasgow University

- “Construction of High-Performance
Virtual Machines for Dynamic Languages”

- HotPy = HotPy Optimising Tracing Python
Interested in all aspects of Virtual Machines
Especially VMs for Dynamic Languages



This Talk

CPython — What it Is, why it Is Important
Tracing — How and why it works
Problems of tracing in Python

Solving these problems, by dropping to a lower
level

Optimising Traces
- Specialisation and Deferred Object Creation

Other Issues (depending on time available)
Conclusions



CPython VM

Default Python implementation

Over 20 years old; has evolved with the Python
language

Based on 1980s technology

| want to bring CPython into the 21* century
No change to language

No change to C API



Why CPython?
(Why not just use PyPy?)

 CPython has many C extensions
- Numpy, scipy

 CPython can be embedded in other
applications

- Blender
 Runs on many platforms



What Is Tracing?

» Several meanings, but in this context it means:

* Monitor the execution of the program until a
“*hot” point Is found

 Record the execution of the hot traces in the
program (Traces may cross function calls)

* Optimise the recorded traces and save In a
trace cache

* When the same part of the program is next
executed, the optimised trace Is executed
iInstead of the original bytecode.



Modifying CPython for Tracing

Separate VM from hardware-machine

- CPython makes a C call for each Python call

— Calls to Python code should stay within the
interpreter, not call into C code

Break calls into prepare/call pair:

- Prepare = create new frame, fill in parameters, etc.

- Call = save return address, and jump to start of
function

Prepare part can call out to C code
Call part stays within interpreter



Managing Traces

Maintain a cache of traces.

Each trace has a hothess

trace.hotness += 1; when a trace iIs executed

trace.hotness *= 0.7/5 every Tms.

- Set T experimentally (probably 200 to 500ms)
Two thresholds: warm & cold.

If
If

notness > warm then add new trace to cache

notness < cold then evict trace from cache



Optimising Traces

* \WWant to use bytecode both as input and output

* Allows optimisations to be tested Inc

 Can develop optimisers incremental

* Important optimisations:
- Specialisation

ependently
V.

- Escape analysis/Deferred object allocation

- Compilation (Removal of interpretive overhead)



Problems with Tracing Bytecode

* Too high level
- Each bytecode does too much, hard to optimise
* Not atomic

- Can observe VM state during the execution of the
bytecode

- VM state includes internal state of interpreter
- Impossible to record trace
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Lower-Level Bytecodes

* WIll need to add new bytecodes.

e These

e Specia

oytecodes are only used internally.

Ised forms of bytecodes:

- Integer & floating-point arithmetic

- Bytecodes for directly calling C functions
* Building-blocks for Python semantics:

- Creating and initialising frames

- Finding attributes in class and object dicts
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SPAM

* Lower level instructions than CPython

» All CPython bytecodes can be implemented in
SPAM instructions.

* Higher level than the hardware, includes
Instructions for core operations in Python:

- Load/store in object dictionary
- Load from class (and super-classes') dictionary

- Python-aware call primitive
e All SPAM instructions are atomic.
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SPAM Instructions

e SPAM Includes low-level instructions:

- ladd, fadd
- native_call

* And special instructions to support Python
semantics:

- load_special or _goto
- class_of

- from_dict_or_goto

- swap_exception_state
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Tracing with SPAM

Record CPython bytecode for common cases
Otherwise drop to SPAM level.

Example BINARY _ADD

- Record BINARY_ADD for int, float, etc.
— Trace call to SPAM code for add otherwise.

SPAM equivalents for all CPython bytecodes
- One-to-one equivalence for simple bytecodes
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SPAM equivalents

LOAD ATTR =
load_special or goto' getattribute ', impossible
name
CALL FUNCTION1 O

e Dispatches to object. getattribute

 CPython does this in C:

- C Is opague and cannot be optimised
- SPAM code Is transparent and optimisable.
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SPAM functions (1)

BINARY SUBSCR =
LOAD _ CONST binary_subscr_function
ROT THREE
CALL FUNCTION 2 O
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SPAM functions (2)

def binary subscr_function:
oad frame O
oad _special or goto' getitem_ ', error
oad frame 1
CALL FUNCTION1 O
RETURN_ VALUE
error:
load_constant not_subscriptable_error
load frame O
CALL FUNCTION1 O

RETURN_ VALUE
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The Main Trace-Based
Optimisations
e Specialisation

- Customise code for the observed types of
variables.

» Deferred Object Creation

- Don't create objects until the last possible moment,
can avoid creating a lot of objects altogether

 Compilation
- Remove Iinterpretative overhead
- Ouputs machine code
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Optimiser Chain

Bytecode Trace
+ Recorded Values

Specialiser

'

[Bytecode Trace)

Deterred Object Creation

'

(Bytecode Tracej

Cleanup

'

(Bytecode Trace)
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Specialisation

Customise the trace for expected types.

For each bytecode:

- Ensure type of objects Is as expected
- Replace bytecode with faster equivalent
- Update type information

Use guards to ensure types are expected

Can replace slow bytecodes with fast ones
- BINARY_ADD - int_add

21



Guards

 Inline Guards
- Extra bytecodes inserted into the trace
* Out-of-Line Guards

- Extra code Is added elsewhere to invalidate trace If
asumptions are violated.

- Example: To guard against a class attribute
changing, add code to type. setattr
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Deferred Object Creation

» Defer the creation of objects for as long as
possible

« Can often defer creation for ever, as the objects
are never needed

« Common for objects created to pass
parameters and in loops
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Deferred Object Creation (2)

e Maintain shadow stacks

* 3 iIndependent shadow stacks:

- Shadow data stack
- Shadow frame stack

- Shadow exception-handling stack

* Only when an object on a stack Is actually
needed are the instructions to create it emitted
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Specialisation and D.O.C. Example

« Calling a simple function, that returns its only
parameter

« E.g. The _iter _ method of any iterator

def iter  (self):
return self

it=x. iter ()
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Starting Trace

_LOAD FAST 2 (X)

oad special ' iter

BUILD PARAMETERS 0 O
prepare_bm call # bm, t, d -> f, (self,)+t, d
func_check 2 iId(x.__iter )

MAKE_ FRAME

INIT_FRAME

LOAD FAST O (self)

RETURN_VALUE




Specialisation (1)

LOAD FAST 2 (X)
load_special ' iter
- Ensure type of x (A guard may need to be inserted)

- Add out-of-line guards to protect against redefinition
of Iter

- Replace with 'bind' instruction to create bound-
method

BUILD PARAMETERS 0 O
prepare_bm_call
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Specialisation (2)

func_check 2 1d(X.__iter )
- Due to guards inserted earlier, this can be removed
MAKE FRAME

INIT_FRAME

LOAD_ FAST 0 (self)
- Guaranteed to be defined, replace with 'load_frame'
POP_ FRAME
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Specialiser Output

LOAD FAST 2 (x)

ensure_type 1d(X)

bind 1d(X._ _iter_ )

BUILD PARAMETERS 0 O

prepare _bm_call

MAKE_ FRAME

INIT_FRAME

LOAD _ FAST 0 (self)

POP_FRAME »




Specialiser

 Makes traces faster
« Small reduction in number of bytecodes

» Specialised bytecodes are faster than the ones
they replaced.
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Deferred Object Creation (1)

« LOAD FAST 2 (X)

- Defer load. Push local[2] (x) to shadow data stack
e bind I1d(X. _iter )

- Pop local[2] from shadow data stack

- Push bound-method (local[2], X. iter ) to
shadow data stack

« BUILD _PARAMETERS O O

- Push empty-tuple () and empty-dict {} to shadow
stack
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D.O.C. (2)

* prepare_bm_call

- Pop all three values from shadow data stack and
rearrange: bm(local[2], X.__iter__), (), {} =>
X.__Iter, (locall2],), {}

 MAKE_FRAME

- Examine callable on data stack (X. iter )
- Push a new frame to the shadow frame stack.

32



D.O.C. (3)

* INIT_FRAME

- Pop all 3 values from the data stack
- Initialise shadow frame from values:
- shadow_frame(deferred_local[0] = local[2])

« LOAD FAST 0 (self)
- Push local[2] (deferred _local[0] == local[2])

« POP_FRAME
— Discard deferred frame
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D.O.C. (4)

So far have emitted zero instructions.

If trace ends, must materialise the stack:
- Emit on bytecode: LOAD FAST 2
Converted nine bytecodes to one!

Contrived example, but D.O.C. can often
reduce the size of code by 50% or more.
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Cleanup

 D.O.C Is very aggressive, and can introduce
guite a lot of stores and loads.

* Tidy up afterwards
 Remove store/load pairs, etc.
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Compilation

* Final (optional) stage
 Add third level of “hotness”, hot.

 When trace becomes hot, then compile It.

e Translate traces to machine-code.

* Previous passes have lowered the level of the
traces; mainly loads/stores and primitive ops.

* Translation to machine code is straight-forward
e Use LLVM, libJIT, nanoJIT, roll-your-own...
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How Much Faster?

It depends:

— If your code spends 90% of its time doing /O it
won't make any difference.

Estimates based on my HotPy VM

For computational Python, very roughly:

- Interpreter only x3
- With compilation x10

For Web stuff — | don't know
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Other Issues

Garbage Collection

Reimplementing the dict for optimisation
Enhancing the builtin function type

Object Representation (Tagging of values)
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Garbage Collection

Reference counting is garbage collection
CPython can keep ref-counting for extensions

Use “tracing” GC for internal objects

— Much faster allocation
- Less overhead
- May Induce slightly longer pauses

Or use “tracing” for stack and locals only

- Gain some performance benefit
- Smaller changes required
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Reimplementing dict

 dict is heavily optimised for general case

* Three categories of dict usage.

- Global/module variable lookup
— Object attribute lookup
- Explicit dictionary use

» Specialisation removes dict lookup for globals

Reduce memory use by sharing keys

—ast as slot access to object attributes
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Reimplementing dict (2)

values keys

Pt




Reimplementing dict (3)

values keys

o= “cheeses”

e ensure(x.values.keys == keys)
 load_slot(x.values, offsetof(cheeses))



Enhancing builtin function

Currently (at least) four different types
Refactor into two types

- functions and unbound methods
Generalise the allowed parameter formats

Add parameter type information

- VM should guarantee that parameters are correct
- Faster (optimisation can eliminate checks)
- Simpler, checks in one place only (DRY principle)
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Object Representation

Reduce header size
- Saturating ref-count, type as integer ID.

agging

- Take a few bits out of word for type information

- Fits almost all ints into pointer (no need for boxing)
- Can even do the same for floats on 64 bit machine

Embed type-id in pointer (this is a bit extreme!)

Evaluation required — May get slower or faster
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Conclusion

CPython can be modified to support tracing

Tracing allows powerful optimisations

- Specialisation

- Deferred Object Creation

Can be made faster and remain portable
- Optimised Traces can be interpreted quickly
Compilation will make it even faster
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Thank You For Listening

Any Questions?

For more info about the experimental platform
and the optimisations:

www.hotpy.org
Or search for “HotPy”
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http://www.hotpy.org/

