
 1

Making CPython Fast With
Trace-Based Optimisations

Mark Shannon

 2

Who Am I?

● Mark Shannon
● Recently completed PhD @ Glasgow University

– “Construction of High-Performance
Virtual Machines for Dynamic Languages”

– HotPy = HotPy Optimising Tracing Python

● Interested in all aspects of Virtual Machines
● Especially VMs for Dynamic Languages

 3

This Talk

● CPython – What it is, why it is important
● Tracing – How and why it works
● Problems of tracing in Python
● Solving these problems, by dropping to a lower

level
● Optimising Traces

– Specialisation and Deferred Object Creation

● Other Issues (depending on time available)
● Conclusions

 4

CPython VM

● Default Python implementation
● Over 20 years old; has evolved with the Python

language
● Based on 1980s technology
● I want to bring CPython into the 21st century
● No change to language
● No change to C API

 5

Why CPython?
 (Why not just use PyPy?)

● CPython has many C extensions
– Numpy, scipy

● CPython can be embedded in other
applications
– Blender

● Runs on many platforms

 6

What is Tracing?

● Several meanings, but in this context it means:
● Monitor the execution of the program until a

“hot” point is found
● Record the execution of the hot traces in the

program (Traces may cross function calls)
● Optimise the recorded traces and save in a

trace cache
● When the same part of the program is next

executed, the optimised trace is executed
instead of the original bytecode.

 7

Modifying CPython for Tracing

● Separate VM from hardware-machine
– CPython makes a C call for each Python call

– Calls to Python code should stay within the
interpreter, not call into C code

● Break calls into prepare/call pair:
– Prepare = create new frame, fill in parameters, etc.

– Call = save return address, and jump to start of
function

● Prepare part can call out to C code
● Call part stays within interpreter

 8

Managing Traces

● Maintain a cache of traces.
● Each trace has a hotness
● trace.hotness += 1; when a trace is executed
● trace.hotness *= 0.75 every Tms.

– Set T experimentally (probably 200 to 500ms)

● Two thresholds: warm & cold.
● If hotness > warm then add new trace to cache
● If hotness < cold then evict trace from cache

 9

Optimising Traces

● Want to use bytecode both as input and output
● Allows optimisations to be tested independently
● Can develop optimisers incrementally.
● Important optimisations:

– Specialisation

– Escape analysis/Deferred object allocation

– Compilation (Removal of interpretive overhead)

 10

Problems with Tracing Bytecode

● Too high level
– Each bytecode does too much, hard to optimise

● Not atomic
– Can observe VM state during the execution of the

bytecode

– VM state includes internal state of interpreter

– Impossible to record trace

 11

Lower-Level Bytecodes

● Will need to add new bytecodes.
● These bytecodes are only used internally.
● Specialised forms of bytecodes:

– Integer & floating-point arithmetic

– Bytecodes for directly calling C functions

● Building-blocks for Python semantics:
– Creating and initialising frames

– Finding attributes in class and object dicts

 12

Sub-Python Abstract Machine

 13

SPAM

● Lower level instructions than CPython
● All CPython bytecodes can be implemented in

SPAM instructions.
● Higher level than the hardware, includes

instructions for core operations in Python:
– Load/store in object dictionary

– Load from class (and super-classes') dictionary

– Python-aware call primitive

● All SPAM instructions are atomic.

 14

SPAM instructions

● SPAM includes low-level instructions:
– iadd, fadd

– native_call

● And special instructions to support Python
semantics:
– load_special_or_goto

– class_of

– from_dict_or_goto

– swap_exception_state

 15

Tracing with SPAM

● Record CPython bytecode for common cases
● Otherwise drop to SPAM level.
● Example BINARY_ADD

– Record BINARY_ADD for int, float, etc.

– Trace call to SPAM code for add otherwise.

● SPAM equivalents for all CPython bytecodes
– One-to-one equivalence for simple bytecodes

 16

SPAM equivalents

LOAD_ATTR =
 load_special_or_goto '__getattribute__', impossible
 name
 CALL_FUNCTION 1 0

● Dispatches to object.__getattribute__
● CPython does this in C:

– C is opaque and cannot be optimised

– SPAM code is transparent and optimisable.

 17

SPAM functions (1)

BINARY_SUBSCR =
 LOAD_CONST binary_subscr_function
 ROT_THREE
 CALL_FUNCTION 2 0

 18

SPAM functions (2)
def binary_subscr_function:
 load_frame 0
 load_special_or_goto '__getitem__', error
 load_frame 1
 CALL_FUNCTION 1 0
 RETURN_VALUE
error:
 load_constant not_subscriptable_error
 load_frame 0
 CALL_FUNCTION 1 0
 RETURN_VALUE

 19

The Main Trace-Based
Optimisations

● Specialisation
– Customise code for the observed types of

variables.

● Deferred Object Creation
– Don't create objects until the last possible moment,

can avoid creating a lot of objects altogether

● Compilation
– Remove interpretative overhead

– Ouputs machine code

 20

Optimiser Chain

 21

Specialisation

● Customise the trace for expected types.
● For each bytecode:

– Ensure type of objects is as expected

– Replace bytecode with faster equivalent

– Update type information

● Use guards to ensure types are expected
● Can replace slow bytecodes with fast ones

– BINARY_ADD → int_add

 22

Guards

● Inline Guards
– Extra bytecodes inserted into the trace

● Out-of-Line Guards
– Extra code is added elsewhere to invalidate trace if

asumptions are violated.

– Example: To guard against a class attribute
changing, add code to type.__setattr__

 23

Deferred Object Creation

● Defer the creation of objects for as long as
possible

● Can often defer creation for ever, as the objects
are never needed

● Common for objects created to pass
parameters and in loops

 24

Deferred Object Creation (2)

● Maintain shadow stacks
● 3 independent shadow stacks:

– Shadow data stack

– Shadow frame stack

– Shadow exception-handling stack

● Only when an object on a stack is actually
needed are the instructions to create it emitted

 25

Specialisation and D.O.C. Example

● Calling a simple function, that returns its only
parameter

● E.g. The __iter__ method of any iterator

def __iter__(self):
 return self

it = x.__iter__()

 26

Starting Trace
● LOAD_FAST 2 (x)
● load_special '__iter__'
● BUILD_PARAMETERS 0 0
● prepare_bm_call # bm, t, d -> f, (self,)+t, d
● func_check 2 id(x.__iter__)
● MAKE_FRAME
● INIT_FRAME
● LOAD_FAST 0 (self)
● RETURN_VALUE

 27

Specialisation (1)

● LOAD_FAST 2 (x)
● load_special '__iter__'

– Ensure type of x (A guard may need to be inserted)

– Add out-of-line guards to protect against redefinition
of __iter__

– Replace with 'bind' instruction to create bound-
method

● BUILD_PARAMETERS 0 0
● prepare_bm_call

 28

Specialisation (2)

● func_check 2 id(X.__iter__)
– Due to guards inserted earlier, this can be removed

● MAKE_FRAME
● INIT_FRAME
● LOAD_FAST 0 (self)

– Guaranteed to be defined, replace with 'load_frame'

● POP_FRAME

 29

Specialiser Output
● LOAD_FAST 2 (x)
● ensure_type id(X)
● bind id(X.__iter__)
● BUILD_PARAMETERS 0 0
● prepare_bm_call
● MAKE_FRAME
● INIT_FRAME
● LOAD_FAST 0 (self)
● POP_FRAME

 30

Specialiser

● Makes traces faster
● Small reduction in number of bytecodes
● Specialised bytecodes are faster than the ones

they replaced.

 31

Deferred Object Creation (1)

● LOAD_FAST 2 (x)
– Defer load. Push local[2] (x) to shadow data stack

● bind id(X.__iter__)
– Pop local[2] from shadow data stack

– Push bound-method (local[2], X.__iter__) to
shadow data stack

● BUILD_PARAMETERS 0 0
– Push empty-tuple () and empty-dict {} to shadow

stack

 32

D.O.C. (2)

● prepare_bm_call
– Pop all three values from shadow data stack and

rearrange: bm(local[2], X.__iter__), (), {} =>
X.__iter, (local[2],), {}

● MAKE_FRAME
– Examine callable on data stack (X.__iter__)

– Push a new frame to the shadow frame stack.

 33

D.O.C. (3)

● INIT_FRAME
– Pop all 3 values from the data stack

– Initialise shadow frame from values:

– shadow_frame(deferred_local[0] = local[2])

● LOAD_FAST 0 (self)
– Push local[2] (deferred_local[0] == local[2])

● POP_FRAME
– Discard deferred frame

 34

D.O.C. (4)

● So far have emitted zero instructions.
● If trace ends, must materialise the stack:

– Emit on bytecode: LOAD_FAST 2

● Converted nine bytecodes to one!
● Contrived example, but D.O.C. can often

reduce the size of code by 50% or more.

 35

Cleanup

● D.O.C is very aggressive, and can introduce
quite a lot of stores and loads.

● Tidy up afterwards
● Remove store/load pairs, etc.

 36

Compilation

● Final (optional) stage
● Add third level of “hotness”, hot.
● When trace becomes hot, then compile it.
● Translate traces to machine-code.
● Previous passes have lowered the level of the

traces; mainly loads/stores and primitive ops.
● Translation to machine code is straight-forward
● Use LLVM, libJIT, nanoJIT, roll-your-own...

 37

How Much Faster?

● It depends:
– If your code spends 90% of its time doing I/O it

won't make any difference.

● Estimates based on my HotPy VM
● For computational Python, very roughly:

– Interpreter only x3

– With compilation x10

● For Web stuff – I don't know

 38

Other Issues

● Garbage Collection
● Reimplementing the dict for optimisation
● Enhancing the builtin function type
● Object Representation (Tagging of values)

 39

Garbage Collection

● Reference counting is garbage collection
● CPython can keep ref-counting for extensions
● Use “tracing” GC for internal objects

– Much faster allocation

– Less overhead

– May induce slightly longer pauses

● Or use “tracing” for stack and locals only
– Gain some performance benefit

– Smaller changes required

 40

Reimplementing dict

● dict is heavily optimised for general case
● Three categories of dict usage:

– Global/module variable lookup

– Object attribute lookup

– Explicit dictionary use

● Specialisation removes dict lookup for globals
● Reduce memory use by sharing keys
● Fast as slot access to object attributes

 41

Reimplementing dict (2)
dict values keys

 42

Reimplementing dict (3)
object values keys

0 “cheeses”

● ensure(x.values.keys == keys)
● load_slot(x.values, offsetof(cheeses))

 43

Enhancing builtin function

● Currently (at least) four different types
● Refactor into two types

– functions and unbound methods

● Generalise the allowed parameter formats
● Add parameter type information

– VM should guarantee that parameters are correct

– Faster (optimisation can eliminate checks)

– Simpler, checks in one place only (DRY principle)

 44

Object Representation

● Reduce header size
– Saturating ref-count, type as integer ID.

● Tagging
– Take a few bits out of word for type information

– Fits almost all ints into pointer (no need for boxing)

– Can even do the same for floats on 64 bit machine

● Embed type-id in pointer (this is a bit extreme!)
● Evaluation required – May get slower or faster

 45

Conclusion

● CPython can be modified to support tracing
● Tracing allows powerful optimisations

– Specialisation

– Deferred Object Creation

● Can be made faster and remain portable
– Optimised Traces can be interpreted quickly

● Compilation will make it even faster

 46

Thank You For Listening

● Any Questions?
● For more info about the experimental platform

and the optimisations:
● www.hotpy.org
● Or search for “HotPy”

http://www.hotpy.org/

