
Language alone 
won’t pay your 

bills

Alan Franzoni - EP 2012
twitter: franzeur

website: www.franzoni.eu

http://www.franzoni.eu
http://www.franzoni.eu


What’s this about?



What’s this about?

• Original idea: “Why Python sucks”



What’s this about?

• Original idea: “Why Python sucks”

• What I really wanted to say: are you aware 
of your tradeoffs?



What’s this about?

• Original idea: “Why Python sucks”

• What I really wanted to say: are you aware 
of your tradeoffs?

• Do you know why you should not use 
Python in a certain context?
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• Should you enjoy? (maybe)

• Should your software be fast? (define fast) 
(maybe)

•Development productivity 
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Software total 
ownership costs

You should consider the total cost 
in order to deliver your software 

to your customer(s) and to 
maintain it working
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• Language

• Code reuse

• Tools

• Deployment
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• Python is pretty good

• Dynamically typed
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(C) Sebastian Hermida    www.sbastn.com 
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It’s not static typing that gives 
Java its slow-and-tedious

feel.
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TRADEOFF:
you’re trading power 

and freedom
for a recognized 

way of doing 
something





Code reuse 1: libraries

• Standard lib gives you quick and full 
access to the underlying OS api, but may 
limit portability

• Libraries may be linked to C libraries -> you 
can reuse existing C code, but 
deployment behaviour may vary.
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• Distutils

• Setuptools

• Distribute

• Distutils2

• Pip

Code reuse 2 - 
packaging
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Code reuse 3 - isolation

• zc.buildout

• virtualenv
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Python Packaging

• Strange things done in setup.py, even 
importing a module before installing it

• Some package working with distribute, 
others with setuptools

• Missing dependencies or version conflicts

• Mutable PyPI -> needs mirroring
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Not working packages
from pypi

33%
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FACTOID #2

• Java project with 50-60 deps

• We had to fork one project because of a 
subtle bug

• Python project with about 10 deps

• We had to fork five libraries because of 
packaging issues or version conflicts
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Maven

• Its XML is a nightmare to newcomers

• It’s declarative

• You basically get the very same build on all 
machines

• Proxy/caching repositories are available
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A matter of authority?

• Python core is not concerned with too 
many tools, as they aren’t directly connected 
to the language

• But they’re needed whatsoever

• There’s nothing like Apache or Eclipse for 
Python. Individual developers write and 
rewrite solutions.
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Why code reuse 
matters

• If somebody else has spent years and years 
in development, should you care and rebake 
your own solution?

• Don’t fall for the NIY syndrome!

• Code reuse in Java is much easier

• Tradeoff: it may be quicker and more fun 
to write in Python, but reusing other’s and 
your own code may be harder!
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Tools matter

• A good IDE just breaks any vanilla Emacs or 
Vim on functionality

• Learning curve is usually better for 
newcomers

• Code-completion can help you a lot

• A good debugger can help you dig into 
complex and tricky situations.

• Refactoring matters a lot.
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Python tools miss 
integration

• Good IDE (IMHO) Pycharm tries to use 
‘default’ tools

• Other IDEs setup their own build files which 
are hard to use without the IDE (e.g. CI)

• Debugger integration is really tricky
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Java tools work 
together

• Highly integrated

• Just pull in a pom.xml and your project is 
setup, including paths, dependencies, code 
completion, deployment to an application 
server

• It’s very fast to pickup on an existing project 
and start hacking

• This is quite true to Ruby as well. Gems 
work fine.
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DELIVERY

• Deployments are an highly manual task in 
Python, both for webapps and standalone 
apps

• There’s no recommended way to to it.

• Packaging into wholly contained directories 
for debs/rpms is all but obvious and requires 
handcrafting.
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Continuos Integration

• Need for reproducible builds

• Hard to make an environment stable and 
deliver the very same artifact that was built 
to production



+1



-1



• Continuous Integration: Improving Software Quality and Reducing 
Risk, by P. Duvall, S. Matyas, A. Glover. Addison-Wesley 2007

• Continuous Delivery: Reliable Software Releases through Build, 
Test, and Deployment Automation, by J. Humble, D. Farley, 
Addison-Wesley 2010 

• Code Complete: A Practical Handbook of Software Construction, 
by S. McConnell, Microsoft Press 2004

• Clean Code: A Handbook of Agile Software Craftsmanship, by R. 
C. Martin, Prentice Hall 2008


