
Language alone
won’t pay your

bills

Alan Franzoni - EP 2012
twitter: franzeur

website: www.franzoni.eu

http://www.franzoni.eu
http://www.franzoni.eu

What’s this about?

What’s this about?

• Original idea: “Why Python sucks”

What’s this about?

• Original idea: “Why Python sucks”

• What I really wanted to say: are you aware
of your tradeoffs?

What’s this about?

• Original idea: “Why Python sucks”

• What I really wanted to say: are you aware
of your tradeoffs?

• Do you know why you should not use
Python in a certain context?

What’s your aim?

What’s your aim?

• Should you enjoy? (maybe)

What’s your aim?

• Should you enjoy? (maybe)

• Should your software be fast? (define fast)
(maybe)

What’s your aim?

• Should you enjoy? (maybe)

• Should your software be fast? (define fast)
(maybe)

•Development productivity

Software total
ownership costs

Software total
ownership costs

You should consider the total cost
in order to deliver your software

to your customer(s) and to
maintain it working

Main topics

Main topics

• Language

Main topics

• Language

• Code reuse

Main topics

• Language

• Code reuse

• Tools

Main topics

• Language

• Code reuse

• Tools

• Deployment

Language

Language

• Python is pretty good

Language

• Python is pretty good

• Dynamically typed

Typing is not the bottleneck

Typing is not the bottleneck

Typing is not the bottleneck

(C) Sebastian Hermida www.sbastn.com

http://www.sbastn.com/
http://www.sbastn.com/

It’s not static typing that gives
Java its slow-and-tedious

feel.

sys.path

sys.path
VS

sys.path

classpath
VS

TRADEOFF:
you’re trading power

and freedom
for a recognized

way of doing
something

Code reuse 1: libraries

• Standard lib gives you quick and full
access to the underlying OS api, but may
limit portability

• Libraries may be linked to C libraries -> you
can reuse existing C code, but
deployment behaviour may vary.

Code reuse 2 -
packaging

• Distutils

Code reuse 2 -
packaging

• Distutils

• Setuptools

Code reuse 2 -
packaging

• Distutils

• Setuptools

• Distribute

Code reuse 2 -
packaging

• Distutils

• Setuptools

• Distribute

• Distutils2

Code reuse 2 -
packaging

• Distutils

• Setuptools

• Distribute

• Distutils2

• Pip

Code reuse 2 -
packaging

Code reuse 3 - isolation

Code reuse 3 - isolation

• zc.buildout

• virtualenv

Diamond dependency

Play together?

Python Packaging

• Strange things done in setup.py, even
importing a module before installing it

• Some package working with distribute,
others with setuptools

• Missing dependencies or version conflicts

• Mutable PyPI -> needs mirroring

FACTOID #1

Not working packages
from pypi

FACTOID #1

Not working packages
from pypi

33%

FACTOID #2

FACTOID #2

• Java project with 50-60 deps

FACTOID #2

• Java project with 50-60 deps

• We had to fork one project because of a
subtle bug

FACTOID #2

• Java project with 50-60 deps

• We had to fork one project because of a
subtle bug

• Python project with about 10 deps

FACTOID #2

• Java project with 50-60 deps

• We had to fork one project because of a
subtle bug

• Python project with about 10 deps

• We had to fork five libraries because of
packaging issues or version conflicts

Maven

Maven

• Its XML is a nightmare to newcomers

Maven

• Its XML is a nightmare to newcomers

• It’s declarative

Maven

• Its XML is a nightmare to newcomers

• It’s declarative

• You basically get the very same build on all
machines

Maven

• Its XML is a nightmare to newcomers

• It’s declarative

• You basically get the very same build on all
machines

• Proxy/caching repositories are available

A matter of authority?

A matter of authority?

• Python core is not concerned with too
many tools, as they aren’t directly connected
to the language

A matter of authority?

• Python core is not concerned with too
many tools, as they aren’t directly connected
to the language

• But they’re needed whatsoever

A matter of authority?

• Python core is not concerned with too
many tools, as they aren’t directly connected
to the language

• But they’re needed whatsoever

• There’s nothing like Apache or Eclipse for
Python. Individual developers write and
rewrite solutions.

Why code reuse
matters

Why code reuse
matters

• If somebody else has spent years and years
in development, should you care and rebake
your own solution?

Why code reuse
matters

• If somebody else has spent years and years
in development, should you care and rebake
your own solution?

• Don’t fall for the NIY syndrome!

Why code reuse
matters

• If somebody else has spent years and years
in development, should you care and rebake
your own solution?

• Don’t fall for the NIY syndrome!

• Code reuse in Java is much easier

Why code reuse
matters

• If somebody else has spent years and years
in development, should you care and rebake
your own solution?

• Don’t fall for the NIY syndrome!

• Code reuse in Java is much easier

• Tradeoff: it may be quicker and more fun
to write in Python, but reusing other’s and
your own code may be harder!

TOOLS

Tools matter

Tools matter

• A good IDE just breaks any vanilla Emacs or
Vim on functionality

Tools matter

• A good IDE just breaks any vanilla Emacs or
Vim on functionality

• Learning curve is usually better for
newcomers

Tools matter

• A good IDE just breaks any vanilla Emacs or
Vim on functionality

• Learning curve is usually better for
newcomers

• Code-completion can help you a lot

Tools matter

• A good IDE just breaks any vanilla Emacs or
Vim on functionality

• Learning curve is usually better for
newcomers

• Code-completion can help you a lot

• A good debugger can help you dig into
complex and tricky situations.

Tools matter

• A good IDE just breaks any vanilla Emacs or
Vim on functionality

• Learning curve is usually better for
newcomers

• Code-completion can help you a lot

• A good debugger can help you dig into
complex and tricky situations.

• Refactoring matters a lot.

Python tools miss
integration

Python tools miss
integration

• Good IDE (IMHO) Pycharm tries to use
‘default’ tools

• Other IDEs setup their own build files which
are hard to use without the IDE (e.g. CI)

• Debugger integration is really tricky

Java tools work
together

Java tools work
together

• Highly integrated

Java tools work
together

• Highly integrated

• Just pull in a pom.xml and your project is
setup, including paths, dependencies, code
completion, deployment to an application
server

Java tools work
together

• Highly integrated

• Just pull in a pom.xml and your project is
setup, including paths, dependencies, code
completion, deployment to an application
server

• It’s very fast to pickup on an existing project
and start hacking

Java tools work
together

• Highly integrated

• Just pull in a pom.xml and your project is
setup, including paths, dependencies, code
completion, deployment to an application
server

• It’s very fast to pickup on an existing project
and start hacking

• This is quite true to Ruby as well. Gems
work fine.

CONTINUOUS
INTEGRATION

AND
DELIVERY

DELIVERY

DELIVERY

• Deployments are an highly manual task in
Python, both for webapps and standalone
apps

• There’s no recommended way to to it.

• Packaging into wholly contained directories
for debs/rpms is all but obvious and requires
handcrafting.

Continuos Integration

Continuos Integration

• Need for reproducible builds

• Hard to make an environment stable and
deliver the very same artifact that was built
to production

+1

-1

• Continuous Integration: Improving Software Quality and Reducing
Risk, by P. Duvall, S. Matyas, A. Glover. Addison-Wesley 2007

• Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation, by J. Humble, D. Farley,
Addison-Wesley 2010

• Code Complete: A Practical Handbook of Software Construction,
by S. McConnell, Microsoft Press 2004

• Clean Code: A Handbook of Agile Software Craftsmanship, by R.
C. Martin, Prentice Hall 2008

