Denis Bilenko

Introduction to Gevent

Timeline

1999 Stackless Python

2004 Greenlet

2006 Eventlet

2009 Gevent o0.x (libevent)

2011 Gevent 1.0dev (libev, c-ares)

Changes in 1.odev

Replaced libevent with libev

Replaced libevent-dns with c-ares

Event loop is pluggable

Resolver is pluggable

Multiple OS threads supported
Fixed annoyances with 0.x
Python'’s signal module now works
Resolver reads [etc/hosts & [etc/resolv.conf
-~ork no longer breaks DNS resolver

Coroutines: why use them

Blocking vs. non-blocking sockets
Gevent

Implementation

API
3 party packages

Why coroutines

How to make network apps

Blocking sockets
Examples: httplib, Django
Non-blocking sockets

Examples: Twisted, Tornado
Non-blocking but looks like blocking

Examples: gevent, eventlet

Blocking sockets

Simple for single connection

Concurrent via multithreading
Portable (+)
Need locks and thread-safe libraries (-)
Memory hungry (-)
Python’s GIL, contention on multicore (-)

Non-blocking sockets

Scalable (better memory usage)

Caller must retry when descriptor is ready
Check readiness with select/poll/epoll/kqueue
select/poll scales as O(N of total descriptors)
epoll scales as O(N of active descriptors)

Event loop

Calculate

poll time Poll

Execute
callbacks

Callback-based programming

Otherwise known as callback hell

still used a lot
Incompatible with blocking libraries

stdlib
most web frameworks

Green threads

Scalable as callbacks
Context switch on I/O

Locks are rarely needed
Only use single process (as any non-blocking)

No GIL problems

To utilize multicore use multiple processes
Drop-in replacement for multithreading

What is a coroutine

multi-shot vs. single-shot
symmetric vs. asymmetric
stackful vs. non-stackful

Stackless Python: multi-shot, stackful
greenlet: single-shot, stackful
yield: single-shot, non-stackful

def myfunction(sock):
yield sock.connect(<address>)
yield sock.sendall(<data>)
response = yield sock.read()

yield is required at all levels

Can’'t do this with yield

MAIN = greenlet.getcurrent()
def function_internal():
MAIN.switch(10)
def function():
function_internal()
return 11

g1 = greenlet(function)
gi.parent # =>MAIN
g1.switch() # => 10
g1.switch() # => 11
gi.dead # =>True

Stack switching

g1.stack_stop

first switch into ga: remember stack_stop

Stack switching

stack_stop

current stack pointer

Stack switching

stack_stop

stack_start

Stack switching

g1
g1.stack_stop

now g1 is inactive and on the heap

greenlet

Pros:
It's quite fast
It uses memory efficiently

Cons:
Portability limited
PyThreadState is shared between greenlets

Gevent clears and restores the exception (tb lost)

What about swapcontext

Possible to implement greenlet API

https://github.com/redbo/python-swapcontext
Memory has to be allocated upfront

Similar memory requirements as with threading
Slower, does at least syscall or two per switch

How Gevent works

gevent.core: event loop

Wrapper around libev
libevent before 1.0

loop = gevent.core.loop(optional parameters)

io_watcher = loop.io(<fd>, READ)
io_watcher .start(myhandler[, arga, ...])
loop.run()

Internal API, not needed in applications

Gevent.core: watchers

io(<fd>, <event>) watcher.start(func, *args)
timer(<at>, <repeat>) watcher.stop()
signal(<signalnum>)

idle()

async()

fork()

prepare()/check()

callback()

http://cvs.schmorp.de/libev/

Hub: event loop in a greenlet

Hub: event loop in a greenlet

hub = get hub () # get or create
hub. loop # access the loop
hub.switch () # resume the loop
hub.wait () # walt for event

put the current greenlet to sleep
def sleep(seconds) :
hub.wait (hub.loop.timer (seconds))

Hub: wait for event

def wait(self, watcher):
watcher.start(getcurrent().switch)
try:
self.switch()
finally:
watcher.stop()

Hub: wait for event

def wait(self, watcher):
unique = object()
watcher.start(getcurrent().switch, unique)
try:
result = self.switch()
assert result is unique, result
finally:
watcher.stop()

Cooperative socket

def recv(self, *args):
while True:
try:
return self. _sock.recv(*args)
except socket.error as ex:
If ex.args|[0] '= EWOULDBLOCK:
raise
10 = hub.loop.io(self.fileno(), READ)

hub.wait(io)

Cooperative networking

gevent.socket

DNS resolution via c-ares (libevent-dns before 1.0)
gevent.ssl
gevent.select (only select())

from gevent import monkey; monkey.patch_all()
import gevent, urllib2

def download(url):
print urllib2.urlopen(url).read()

g = gevent.spawn(download, “http://gevent.org”)
download(“http://python.org")

g.join()

Monkey patching

monkey.patch_all()

socket

ss|

time.sleep, select.select
thread

threading, incl. local

monkey.patch_all(thread=False)

Not necessary but highly recommended

Greenlet

Greenlet.spawn creates Greenlet instance and
starts it

g = Greenlet(function, arg1, arg2=value)
g.start() # asynchronous

wait for it to complete
g.join()

raise an asynchronous exception
g.kill()

Greenlet

Greenlet.spawn creates Greenlet instance and
starts it

g = Greenlet(function, argz, arg2=value)
g.start() # asynchronous

wait for it to complete
g.join(timeout=2)

raise an async exception, wait for g to die
g.kill(timeout=2)

Timeout

with gevent.Timeout(s):
response = urllib2.urlopen(url)
for line in response:
print line
raises Timeout if not done after 5 seconds

with gevent.Timeout(s, False):
response = urllib2.urlopen(url)
for line in response:
print line
exits block if not done after 5 seconds
Beware of “except:”
Cannot interrupt non-yielding code (use SIGALRM for that)

pool = gevent.pool.Pool(10000)

while True:
socket, address = listener.accept()
pool.spawn(handle, socket, address)
spawn blocks if more than 10000 conns

join, kill, apply, apply_async, imap, imap_unordered,
map

TCP Server

def handle(socket, address):
socket.sendall(“hello”)

server = StreamServer((*, 5000), handle)
server.start()
server.stop()

Supports SSL, Pools

Greenlet communication

geve Nnt.event
Event

AsyncResult
gevent.queue

Queue, PriorityQueue, JoinableQueue
gevent.coros

Semaphore, BoundedSemaphore, Lock, Rlock
If you know the name, you know the API!

WSGI Server

0.X
Based on libevent-http: gevent.wsgi

Pure Python: gevent.pywsgi
1.0

gevent.pywsgi
Gunicorn:

Pre-fork workers for any of gevent servers
http://gunicorn.org

database drivers

Psycopgz2: generic support for coroutines
amysql and gevent-mysq|
gevent-memcache

All pure Python packages, e.q. redis

3rdparty

WebSocket protocol and Socket.io backend
Locust — HTTP load testing tool
tproxy/hroute — TCP/HTTP proxies with logic
in Python
gevent-zeromg

kaylee — Distributed MapReduce with oMQ

Miyamoto —fast clusterable task queue inspired
by GAE

http://bit.ly/ProjectsUsingGevent

Case study: omegle.com

half a million visitors / day

20000 online users

3 servers, 4gb of memory each
10% of memory used

60% cpu used
~60 KB/connection
Switched to gevent from twisted

When it had 5000 users in a single process
Single process use grew up to 9600 peak users

Future plans

1.0
Fast WSGl server: gevent.wsgi
Documentation

Do not block the release:

Py3k support
Thread pools
Process pools

Summary

coroutines are easy to use threads

as efficient as async libraries

works well if app if app is I/O bound

simple APl many things familiar

works with unsuspecting 3™ party modules

Thank you!

http://gevent.org

@gevent

http://gevent.org/

