
Denis Bilenko

 1999 Stackless Python
 2004 Greenlet
 2006 Eventlet
 2009 Gevent 0.x (libevent)
 2011 Gevent 1.0dev (libev, c-ares)

 Replaced libevent with libev
 Replaced libevent-dns with c-ares
 Event loop is pluggable
 Resolver is pluggable
 Multiple OS threads supported
Fixed annoyances with 0.x
 Python’s signal module now works
 Resolver reads /etc/hosts & /etc/resolv.conf
 Fork no longer breaks DNS resolver

 Coroutines: why use them

 Blocking vs. non-blocking sockets

 Gevent

 Implementation

 API

 3rd party packages

 Blocking sockets

 Examples: httplib, Django

 Non-blocking sockets

 Examples: Twisted, Tornado

 Non-blocking but looks like blocking

 Examples: gevent, eventlet

 Simple for single connection

 Concurrent via multithreading

 Portable (+)

 Need locks and thread-safe libraries (-)

 Memory hungry (-)

 Python’s GIL, contention on multicore (-)

 Scalable (better memory usage)
 Caller must retry when descriptor is ready
 Check readiness with select/poll/epoll/kqueue
 select/poll scales as O(N of total descriptors)
 epoll scales as O(N of active descriptors)

Poll

Execute
callbacks

Calculate
poll time

 Otherwise known as callback hell

 still used a lot

 Incompatible with blocking libraries

 stdlib

 most web frameworks

 Scalable as callbacks
 Context switch on I/O

 Locks are rarely needed

 Only use single process (as any non-blocking)

 No GIL problems

 To utilize multicore use multiple processes

 Drop-in replacement for multithreading

 multi-shot vs. single-shot
 symmetric vs. asymmetric
 stackful vs. non-stackful

 Stackless Python: multi-shot, stackful
 greenlet: single-shot, stackful
 yield: single-shot, non-stackful

def myfunction(sock):
 yield sock.connect(<address>)
 yield sock.sendall(<data>)
 response = yield sock.read()

 yield is required at all levels

MAIN = greenlet.getcurrent()
def function_internal():
 MAIN.switch(10)
def function():
 function_internal()
 return 11

g1 = greenlet(function)
g1.parent # => MAIN
g1.switch() # => 10
g1.switch() # => 11
g1.dead # => True

g1.stack_stop

first switch into g1: remember stack_stop

stack_stop

current stack pointer

stack_stop

stack_start

g1.stack_stop

now g1 is inactive and on the heap

g1

Pros:
 It’s quite fast
 It uses memory efficiently

Cons:
 Portability limited
 PyThreadState is shared between greenlets

 Gevent clears and restores the exception (tb lost)

 Possible to implement greenlet API

 https://github.com/redbo/python-swapcontext

 Memory has to be allocated upfront

 Similar memory requirements as with threading

 Slower, does at least syscall or two per switch

 Wrapper around libev

 libevent before 1.0

loop = gevent.core.loop(optional parameters)

io_watcher = loop.io(<fd>, READ)
io_watcher .start(myhandler[, arg1, …])
loop.run()

Internal API, not needed in applications

 io(<fd>, <event>)
 timer(<at>, <repeat>)
 signal(<signalnum>)
 idle()
 async()
 fork()
 prepare()/check()
 callback()

watcher.start(func, *args)
watcher.stop()

http://cvs.schmorp.de/libev/

HUB

MAIN

 hub = get_hub() # get or create

 hub.loop # access the loop

 hub.switch() # resume the loop

 hub.wait() # wait for event

put the current greenlet to sleep

def sleep(seconds):

 hub.wait(hub.loop.timer(seconds))

def wait(self, watcher):
 watcher.start(getcurrent().switch)
 try:
 self.switch()
 finally:
 watcher.stop()

def wait(self, watcher):
 unique = object()
 watcher.start(getcurrent().switch, unique)
 try:
 result = self.switch()
 assert result is unique, result
 finally:
 watcher.stop()

def recv(self, *args):

 while True:

 try:

 return self._sock.recv(*args)

 except socket.error as ex:

 if ex.args[0] != EWOULDBLOCK:

 raise

 io = hub.loop.io(self.fileno(), READ)

 hub.wait(io)

 gevent.socket

 DNS resolution via c-ares (libevent-dns before 1.0)

 gevent.ssl
 gevent.select (only select())

from gevent import monkey; monkey.patch_all()
import gevent, urllib2

def download(url):
 print urllib2.urlopen(url).read()

g = gevent.spawn(download, “http://gevent.org”)
download(“http://python.org”)
g.join()

 monkey.patch_all()
 socket

 ssl

 time.sleep, select.select

 thread

 threading, incl. local

 monkey.patch_all(thread=False)

Not necessary but highly recommended

Greenlet.spawn creates Greenlet instance and
starts it

g = Greenlet(function, arg1, arg2=value)
g.start() # asynchronous

wait for it to complete
g.join()

raise an asynchronous exception
g.kill()

Greenlet.spawn creates Greenlet instance and
starts it

g = Greenlet(function, arg1, arg2=value)
g.start() # asynchronous

wait for it to complete
g.join(timeout=2)

raise an async exception, wait for g to die
g.kill(timeout=2)

with gevent.Timeout(5):
 response = urllib2.urlopen(url)
 for line in response:
 print line
raises Timeout if not done after 5 seconds

with gevent.Timeout(5, False):
 response = urllib2.urlopen(url)
 for line in response:
 print line
exits block if not done after 5 seconds
 Beware of “except:”
 Cannot interrupt non-yielding code (use SIGALRM for that)

pool = gevent.pool.Pool(10000)

while True:
 socket, address = listener.accept()
 pool.spawn(handle, socket, address)
 # spawn blocks if more than 10000 conns

join, kill, apply, apply_async, imap, imap_unordered,
map

def handle(socket, address):
 socket.sendall(“hello”)

server = StreamServer((‘’, 5000), handle)
server.start()
server.stop()

Supports SSL, Pools

 gevent.event

 Event

 AsyncResult

 gevent.queue

 Queue, PriorityQueue, JoinableQueue

 gevent.coros

 Semaphore, BoundedSemaphore, Lock, Rlock

 If you know the name, you know the API!

 0.x

 Based on libevent-http: gevent.wsgi

 Pure Python: gevent.pywsgi

 1.0

 gevent.pywsgi

 Gunicorn:

 Pre-fork workers for any of gevent servers

 http://gunicorn.org

 Psycopg2: generic support for coroutines
 amysql and gevent-mysql
 gevent-memcache
 All pure Python packages, e.g. redis

 WebSocket protocol and Socket.io backend
 Locust – HTTP load testing tool
 tproxy/hroute – TCP/HTTP proxies with logic

in Python
 gevent-zeromq

 kaylee – Distributed MapReduce with 0MQ

 Miyamoto – fast clusterable task queue inspired
by GAE

http://bit.ly/ProjectsUsingGevent

 half a million visitors / day
 20000 online users
 3 servers, 4gb of memory each

 10% of memory used

 60% cpu used

 ~60 KB/connection
 Switched to gevent from twisted

 When it had 5000 users in a single process

 Single process use grew up to 9600 peak users

1.0
 Fast WSGI server: gevent.wsgi
 Documentation
Do not block the release:
 Py3k support
 Thread pools
 Process pools

 coroutines are easy to use threads
 as efficient as async libraries
 works well if app if app is I/O bound
 simple API many things familiar
 works with unsuspecting 3rd party modules

Thank you!

http://gevent.org

@gevent

http://gevent.org/

