Implementing distributed
applications with

Vo
Y
" y |

..and some other bad guys...

Crippa Francesco

Scalability vs Complexity

Scalability vs Complexity

what we want

A41x2)dwo)

‘

1 Thread 2 Threads 2 Nodes 4 Nodes

Scalability vs Complexity

reality

A41x2)dwo)

1 Thread 2 Threads 2 Nodes 4 Nodes

The Q in OMQ

Monday, July 18, 2011

Monday, July 18, 2011

Monday, July 18, 2011

The @ in OMQ

The @ in OMQ

® Zero Broker

The @ in OMQ

® Zero Broker

@ Zero Latency (as close as possible...)

The @ in OMQ

® Zero Broker
@ Zero Latency (as close as possible...)

® Zero administration

Monday, July 18, 2011

The @ in OMQ

® Zero Broker
@ Zero Latency (as close as possible...)
® Zero administration

® Zero cost

Monday, July 18, 2011

The @ in OMQ

@ Zero Broker

@ Zero Latency (as close as possible...)
@ Zero administration

@ Zero cost

® Zero waste

Monday, July 18, 2011

Sockets

Sockets

@ Unicast transports (inproc, ipc, tcp)

Monday, July 18, 2011

Sockets

@ Unicast transports (inproc, ipc, tcp)

@ Multicast transports (pgm or epgm)

Monday, July 18, 2011

Sockets

@ Unicast transports (inproc, ipc, tcp)
@ Multicast transports (pgm or epgm)

@ connect() and bind() are independent

Monday, July 18, 2011

Sockets

@ Unicast transports (inproc, ipc, tcp)
@ Multicast transports (pgm or epgm)
@ connect() and bind() are independent

@ They are asynchronous (with queues)

Monday, July 18, 2011

Sockets

@ Unicast transports (inproc, ipc, tcp)
@ Multicast transports (pgm or epgm)
@ connect() and bind() are independent
@ They are asynchronous (with queues)

@ They express a certain "messaging pattern”

Monday, July 18, 2011

Sockets

@ Unicast transports (inproc, ipc, tcp)

@ Multicast transports (pgm or epgm)

@ connect() and bind() are independent

@ They are asynchronous (with queues)

@ They express a certain "messaging pattern”

@ They are not necessarily one-to-one

Monday, July 18, 2011

...and, of course...

@ Cross Platform (Linux, Windows, Mac, etc...)

@ Multiple Languages (¢, c++, python, java,
ruby, erlang, php, perl, ada, c#, lua, scala,
objective-c, go, haskell, racket, cl, basic...)

@ OpenSource

Monday, July 18, 2011

if you have a laptop..

@ http://www.zeromgq.org/

@ http://zquide.zeromqg.org/

http://www.zeromq.org
http://www.zeromq.org

Basic Message Patterns

> Server

.| hwserver.py

Hello World server in Python
Binds REP socket to tcp://*:5555
Expects "Hello" from client, replies with "World"

import zmq
import time

context = zmq.Context()
socket = context.socket(zmqg.REP)
socket.bind("tcp://*:5555")

while True:
Wait for next request from client
message = socket.recv()
orint "Received request:

, message

Do some 'work'
time.sleep (1) i Do some 'work'

Send reply back to client
socket.send("World")

Line: 1 Column: 1 2 Python Django s) ¥ SoftTabs: 4 7 —

Monday, July 18, 2011

> Client

.| hwclient.py

Hello World client in Python
Connects REQ socket to tcp://localhost:5555
Sends "Hello" to server, expects "World" back

import zmq

context = zmq.Context()

Socket to talk to server

print "Connecting to hello world server..."

socket = context.socket(zmq.REQ)
socket.connect ("tcp://localhost:5555")

Do 10 requests, waiting each time for a response
for request in range (1,10):

orint "Sending request ", request,"”...

socket.send ("Hello")

Get the reply.
message = socket.recv()
orint "Received reply ", request, "[", message, "]"

Line: 1 Column: 1 © Python Django + /¥ SoftTabs: 4 7 —

Monday, July 18, 2011

Demo

Monday, July 18, 2011

Basic Message Patterns

Server

| | wuserver.py

Weather update server
Binds PUB socket to tcp://*:5556
Publishes random weather updates

import zmq
import random

context = zmq.Context()
socket = context.socket(zmq.PUB)
socket.bind("tcp://*:5556")

while True:
zipcode = random.randrange(1,100000)
temperature = random.randrange(1,215) - 80
relhumidity = random.randrange(1,50) + 10

socket.send("¥d %d ¥d" * (zipcode, temperature, relhumidity))

Line:1 Column: 1 © Python Django s 'Y SoftTabs: 4 ; —

Monday, July 18, 2011

Client

| wuclient.py

Weather update client
Connects SUB socket to tcp://localhost:5556
Collects weather updates and finds avg temp in zipcode

import sys
import zmq

Socket to talk to server

context = zmq.Context()
socket = context.socket(zmq.SUB)

print "Collecting updates from weather server..."
socket.connect ("tcp://localhost:5556")

Subscribe to zipcode, default is NYC, 10001
filter = sys.argv[1l] 1if len(sys.argv) > 1 else "10001"
socket.setsockopt(zmq.SUBSCRIBE, filter)

Process 5 updates

total_temp = 0

for update_nbr in range (5):
string = socket.recv()
zipcode, temperature, relhumidity = string.split()
total_temp += int(temperature)

&2/ print "Average temperature for zipcode '%s' was ¥dF" % (
filter, total_temp / update_nbr)

Line: 1 Column: 1 © Python Django + 'Y SoftTabs: 4 7 —

Monday, July 18, 2011

Demo

Publisher
Subscriber

@ The PUB-SUB socket pair is asynchronous

@ when you use a SUB socket you must set a
subscription using zmq_setsockopt and
SUBSCRIBE

o "slow joiner” symptom

Monday, July 18, 2011

Basic Message Patterns

Monday, July 18, 2011

¥ Task ventilator
— # Binds PUSH socket to tcp://localhost:5557

AT, # Sends batch of tasks to workers via that socket
@ \ ’
2t \}f‘ # Author: Lev Givon <lev(at)columbia(dot)edu>
.) —> | | —> } import zmq
- 4 K\.;*'
o - : import random
e /‘ﬂ-n\ ,/% import time
‘ W
\’ﬁb/'D‘DE_J_Q. context = zmq.Context()

Socket to send messages on
sender = context.socket(zmq.PUSH)
sender.bind("tcp://*:5557")

orint "Press Enter when the workers are ready: "
- = raw_input()

rint "Sending tasks to workers...

The first message is "@" and signals start of batch

sender.send('0")

Initialize random number generator
random. seed()

Send 100 tasks
total_msec - @
for task_nbr in range(100):

Random workload from 1 to 100 msecs
workload ~ random.randint(1l, 100)
total_msec += workload
sender.send(str(workload))

print "Total expected cost: %s msec"” % total_msec

Give OMQ time to deliver
time.sleep(l)

Ventilator

Line: 1 Column: 1 Python Django + ' ¥ SoftTabs: 4 ¢ —

Monday, July 18, 2011

SN $) || taskwork.py

¥ Task worker

AT # Connects PULL socket to tcp://localhost:5557
N) . # Collects workloads from ventilator via that socket
o N\a # Connects PUSH socket to tcp://localhost:5558
AT AT A AT ¥ Sends results to sink via that socket
‘) —> |) —3~ } '
pali - : \..” ¥ Author: Lev Givon <lev(at)columbia(dot)edu>
\/ | m /’ |
. L) import sys
’iDLLH;Q, import time

R import zmq
context = zmq.Context()

Socket to receive messages on
receiver = context.socket(zmg.PULL)
receiver.connect("tcp://localhost:5557")

Socket to send messages to
sender = context.socket(zmq.PUSH)
sender.connect("tcp://localhost:5558")

¥ Process tasks forever
while True:
receiver.recv()

Simple progress indicator for the viewer
sys.stdout.write('.")
sys.stdout. flush()

Do the work
time.sleep(int(s)*0.001)

Send results to sink
sender.send(' ")

Worker Line: 1 Column: 1 _ Python Django - . v_Soft Tabs: 4 . —

Monday, July 18, 2011

| tasksink.py

Task sink
I W # Binds PULL socket to tcp://localhost:5558
& \ # Collects results from workers via that socket
! R w \ i /Pq\} # Author: Lev Givon <lev(at)columbia(dot)edu>
\ 4 B 4 i \!l»*
import sys
W =) ///k import time
\u“/' ’13‘5_ Ll‘Q import zmq

context = zmq.Context()

Socket to receive messages on
receiver = context.socket(zmg.PULL)
receiver.bind("tcp://*:5558")

Wait for start of batch
receiver.recv()

Start our clock now
tstart = time.time()

Process 100 confirmations
total_msec = 0
for task_nbr in range(100):
= receiver.recv()
1f task_nbr ¥ 10 == 0:
sys.stdout.write(':")
else:
sys.stdout.write('.")

Calculate and report duration of batch

tend = time.time()
print "Total elapsed time: ¥d msec” % ((tend-tstart)*1000)

[
S' n k Line: 1 Column: 1 ~ Python Django + ¥ SoftTabs: 4 7 —

Monday, July 18, 2011

f ‘.'

- \
o \ ,/-\| £ \
| | > J— '.-
| ., - \» ’

/\'

. \ Y

] ‘ ',-/

. PIPEINR

Demo

Monday, July 18, 2011

g
QS > Q) - 'z Q)
& .

@ Always synchronize the start of the batch

® The ventilator's PUSH socket distributes
tasks to workers (load balancing)

® The sink's PULL socket collects results from
workers evenly (fair-queuing)

Monday, July 18, 2011

-S| Fair-Queuing

RA 2R3 R4 R5| RG

FAIR OLuev NG
RAR 4 R5 |2 R6 R
1%

Basic Message Patterns

o
006
0

e—0O [Q@Q

Send

messages
back

KL SIGNNL

Monday, July 18, 2011

eSO . | mspoller.py
¥ encoding: utf-8
#

Reading from multiple sockets
This version uses zmq.Poller()

Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)theory(dot)org>

import zmq

Prepare our context and sockets
context = zmq.Context()

Connect to task ventilator
receiver = context.socket(zmqg.PULL)
receiver.connect("tcp://localhost:5557")

Connect to weather server
subscriber = context.socket(zmq.SUB)
subscriber.connect("tcp://localhost:5556")

subscriber.setsockopt(zmq.SUBSCRIBE, "10001")

Initialize poll set

poller = zmq.Poller()
poller.register(receiver, zmq.POLLIN)
poller.register(subscriber, zmq.POLLIN)

Process messages from both sockets
while True:
socks = dict(poller.poll())

- receiver in socks and socks[receiver] == zmq.POLLIN:
message = receiver.recv()
¥ process task

- subscriber in socks and socks[subscriber] == zmq.POLLIN:
message = subscriber.recv()
process weather update

Line:1 Column: 1) Python Django =+ .)¥ SoftTabs: 4 7 —

Monday, July 18, 2011

’

Demo

Monday, July 18, 2011

Allowed Patterns

@ PUB and SUB @ DEALER and DEALER
@ REQ and REP @ ROUTER and ROUTER
@ REQ and ROUTER @ PUSH and PULL
@ DEALER and REP @ PAIR and PAIR

@ DEALER and ROUTER

Monday, July 18, 2011

Scalability

Scalability

Scalabilify

T B e
SCdlablllfy O/ e

A Publish-Subscribe Proxy

PURLISHE R

BIND
TCP//19L.168.55.212 6556

\ NT;P._r\/l\L I\JE_T\X/oP.-/\
ExTERNAL Netrwor K

SUBSc | ber SUBSC | bel

Monday, July 18, 2011

8006 || wuproxy.py

Weather proxy device
#
Author: Lev Givon <lev(at)columbia(dot)edu>

import zmq
context = zmq.Context()

This 1s where the weather server sits
frontend = context.socket(zmg.SUB)
frontend. connect("tcp://192.168.55.210:5556")

This is our public endpoint for subscribers
backend = context.socket(zmq.PUB)
backend.bind("tcp://10.1.1.0:8100")

Subscribe on everything
frontend. setsockopt(zmqg.SUBSCRIBE, '')

Shunt messages out to our own subscribers
while True:
while True:

Process all parts of the message
message = frontend.recv()
more = frontend.getsockopt(zmq.RCVMORE)
1t more:

backend.send(message, zmq.SNDMORE)
else:

backend.send(message)

break # Last message part

Line: 1 Column: 1 Python Django v+) ¥ SoftTabs: 4 7 —

Monday, July 18, 2011

Built-in Devices

@ QUEUE (request-reply broker.)
@ FORWARDER (pub-sub proxy server)

@ STREAMER (like FORWARDER but for
pipeline flows)

Monday, July 18, 2011

HON$) | | msgqueue.py

Simple message queuing broker
Same as request-reply broker but using QUEUE device

Author: Guillaume Aubert (gaubert) <guillaume(dot)aubert(at)gmail(dot)com>

import zmq

def main():
""" main method """

context = zmq.Context(1l)

Socket facing clients
frontend = context.socket(zmqg.XREP)
frontend.bind("tcp://*:5559")

Socket facing services
backend = context.socket(zmq.XREQ)
backend.bind("tcp://*:5560")

zmq.device(zmq.QUEUE, frontend, backend)

We never get here...
frontend.close()
backend.close()
context.term()

Line: 1 Column: 1 ' Python Django + JvY SoftTabs: 4 7 —

Monday, July 18, 2011

Dynamic Scalability...

Monday, July 18, 2011

Dynamic Scalability...

Monday, July 18, 2011

Dynamic Scalability...

@MQ : Sockets = Python : C++

