
How to bootstrap a startup using Django
Philipp Wassibauer (@__philw__) & Jannis Leidel (@jezdez)



The idea

Gidsy is a place where anyone 
can explore, book and offer 

things to do.





Why we chose Django

 Big community
 Network
 Language
 Many problems already solved
 The admin



Why Django is a good choice

 Proven technology by similar use cases
 Stable APIs in a well-de!ned release process
 Good documentation with focus on prose
 Huge community of 3rd party components



Search

 Customizable search abstraction
 Indexing, !ltering, faceting, “More like this”
 Spatial search and sorting

Haystack



API

 Highly customizable Web API library
 Hooks for auth, throtteling, caching, etc.
 Backbone.js compatible

Tastypie



Task queues

 Async code execution, cronjobs
 Thumbnails, search index updates, caching, etc.
 Collect stats without blocking

Celery



Caching

 Periodic cache refreshing for high traffic sites
 Fragment caching with dates and cache version
 Cache warming during deployment

Memcache



Work#ow

 Main branch is always deployable
 Development happens in feature branches
 Code reviews via pull requests
 Shared responsibility



Testing

 Separation of fast and slow tests 
 Full test suite via Jenkins, soon Travis CI
 Fast tests locally via tox 



Releasing

 Virtualenv(wrapper) + pip
 Localshop for in-house software releases
 django-setcon for Django con!guration
 Foreman for process management



Scaling up

 Initially infrastructure and deployments are simple

or



Scaling up

 Each server downloads dependencies
 External services could be down (PyPI, Github, ...)
 Which server is in charge of migrations, collectstatic?



Scaling up

 Central deployment server that builds releases
 Other servers download .tar package from there



Deploy system

 Builds are virtualenvs
 Atomic and orchestrated releases
 Collectstatic, migrate & other commands centralized
 Web interface for deploying, rollback
 Keeps information on who deployed what
 Will be open sourced



Deploy system

Hipchat (or IRC)

New RelicDeploy

 Noti!es the team and services when deploys happen



Provisioning servers

 Follows DRY principle
 Chef/Puppet/Salt
 Documents infrastructure and change
 Place to share and store secure data
 Roles can be on many or one servers
 Challenge is separating deployment from app



{
  "name": "staging",
  "cookbook_versions": {
    "gidsy_common": "0.0.3"
  },
  "override_attributes": {
    "gidsy": {
      "DISABLE_QUERYSET_CACHE": "False",
      "COMPRESS_ENABLED": "True",
      "EMAIL_HOST_PASSWORD": "*****",
      "BROKER_URL": "redis://14.21.12.18:6379/5",
      "HAYSTACK_URL": "http://10.24.15.21:9200/"
    },
    "databases": {
        "gidsy": "host=11.21.17.34  dbname=gidsy",
    },
  },
  ...
  "json_class": "Chef::Environment",
  "chef_type": "environment"
}

Staging Environment

{
    "run_list": [
    "recipe[ssh_config]",
    "recipe[sudo]",
    "recipe[users::sysadmins]",
    "recipe[pg_bouncer]",
    "recipe[nginx::default]",
    "recipe[gidsy_common]",
    "recipe[gidsy_web]",
    "recipe[new_relic]",
    "recipe[hostname]",
    "recipe[papertrail]"
  ],
  ....
  "name": "web",
  "json_class": "Chef::Role"
}

Chef con!guration

Chef Environment

{
    "run_list": [
    "recipe[ssh_config]",
    "recipe[sudo]",
    "recipe[users::sysadmins]",
    "recipe[pg_bouncer]",
    "recipe[gidsy_common]",
    "recipe[gidsy_celery]",
    "recipe[new_relic]",
    "recipe[hostname]",
    "recipe[papertrail]"
  ],
  ....
  "name": "celery",
  "json_class": "Chef::Role"
}

Chef Role Chef Role

http://10.224.105.241:9200
http://10.224.105.241:9200


Provisioning servers

knife ec2 server create -N staging-web1 -r "role[web]" -G staging-web -E staging -I ami-95dde2e1 -f m1.small -Z eu-west-1a

Starting a new web server using chef

knife ec2 server delete i-1234567

Deleting a web server

knife ssh “role:web”  “sudo chef-client”

Running commands on all web servers



Working with cloud servers

ec2-ssh 

ssh ubuntu@ec2-42-11-12-11.eu-west-1.compute.amazonaws.com -i ~/.ssh/gidsy.pem

before

ec2-ssh phil@production-web2

after

 Simple syntax 
 Name never changes, unlike url on reboot of server

mailto:ubuntu@ec2-46-137-52-115.eu-west-1.compute.amazonaws.com
mailto:ubuntu@ec2-46-137-52-115.eu-west-1.compute.amazonaws.com


Working with cloud servers

pychef

 Access node data and manipulate it with python
 Use it in fabric



Operations, metrics, maintenance

 Log everything you could need for debugging
 If you deploy often then you need immediate feedback
 Use services if you can (Mixpanel, NewRelic, Librato, Papertrail, Pagerduty)

 Show the metrics on a screen in the office



Operations, metrics, maintenance

 Push data to the services (mixpanel, librato, log, db)
 App-metrics -> librato or mixpanel
 Logging -> papertrail -> librato
 Extended it to send one metric to many backends

django-app-metrics



Operations, metrics, maintenance

Papertrail log of celery tasks sent

 Logs can be graphed by librato
 Set alerts on logs that send to pagerduty/hipchat/webhook...



Librato/Graphite

Operations, metrics, maintenance

 Logs can be graphed by librato
 Set alerts on logs that send to pagerduty/hipchat/webhook...



Things we learned

 Only scale when you need to, but be prepared
 Be pragmatic, use the best tool to do the job
 Automate as much as you can
 Continuous Integration and Continuous Deployment
 Make routine tasks as easy as possible
 Use services
 Display metrics

To bootstrap your startup quickly



https://gidsy.com/jobs/

Engineering – Backend and Operations
Engineering – Web development

Want to work with us?

https://gidsy.com/jobs/
https://gidsy.com/jobs/


Questions?

@gidsynews

http://laboratory.gidsy.com/


