

Binary Compatible

High Performance

VM for Python

HotPy (2)

Mark Shannon

Who am I?

● Mark Shannon
● PhD thesis on building VMs for dynamic languages
● During my PhD I developed:

– GVMT. A virtual machine tool kit including a JIT-
compiler generator.

– HotPy (1) A Python VM build with the GVMT.

● I'm currently looking for work in the UK

HotPy (2)

● HotPy (2) is:
– a branch of CPython (3.3)

– a tracing optimising interpreter

– binary compatible with CPython

– Currently about the same speed as CPython

– Expected to be faster quite soon.

Why Bother with HotPy (2)?
 (Why not just use PyPy?)

● Binary Compatibility and Portability
● CPython has many C extensions
● CPython can be embedded in other applications
● CPython runs on many platforms
● But CPython is slow(er than PyPy)

Binary Compatibility (Informally)

● Drop in replacement for CPython
● Replace CPython executable with HotPy executable

and it will just work.

C Modules

Python
 Modules

 CPython
Interpreter

Binary Compatibility (Informally)

● Drop in replacement for CPython
● Replace CPython executable with HotPy executable

and it will just work.

C Modules

Python
 Modules

 HotPy
Interpreter

Binary Compatibility (More Formally)

● Full function API
– including those with leading underscore

● ABI compatibility of PEP 384 (at a minimum)
● Layout of the PyThreadState and PyFrameObject

will change.
● A few C extensions may need a little work

– Particularly code that is very tightly bound to
CPython such as Cython.

High Performance

● For pure Python code expectation is x2 faster
● When (if) compilation is implemented x5-8
● Dynamic optimisation removes much of the

overhead of CPython.
● Techniques from all over the place, some my own,

some pioneered by PyPy, many from the academic
literature.

Optimising the CPython VM

An ideal model of the CPython VM.

● The entire state of the VM should be resident in
heap memory in between bytecodes

– The state of the VM should be fully described by the
in-memory data structures

– No part of the VM state should be embedded in the C
stack or kept in a register.

● Each bytecode should be atomic
– i.e. it should be impossible to observe the state of the VM

part way through its execution.

Atomic Bytecodes.

● An atomic bytecode
cannot be observed part
way through its
execution

● Any calls made during
the bytecode must be
tail calls.

The Real CPython VM

● Lots of “micro” optimisations
● VM state is embedded in the C stack
● Many bytecodes are compound (not atomic)

Making the CPython VM Optimisable

● Before optimising CPython, we must make it
optimisable

● All bytecodes must be atomic
● OrOr have equivalent function that is implemented in

terms of atomic bytecodes
● Full VM state must be resident in heap memory

– About 10% slower.

Making CPython bytecodes atomic

● Have to add (about 40) new bytecodes
● Each performs an atomic operation
● These are not hardware-level operations
● Can perform dictionary access or other intermediate

level operation
● All can be completely described in terms of their

effect on VM state.

Low-level Python

def surrogate_type_call(cls, args, kws):
 obj = cls.__new__(cls, *args, **kws)
 if $subtype($type(obj), cls):
 res = obj$__init__(*args, **kws)
 if res is not None:
 raise TypeError("__init__() ”
 “should return None not ”
 “'%s'" % $type(res)$__name__)
 return obj

Low-level Python

● $op() represents a single bytecode

– Not a load of “op” followed by a function call

– E.g. $type(x) is the type of x, not a call to type()

● obj$attr represents the LOAD_SPECIAL bytecode

– Like load-attr but uses the “special” attribute lookup used
by Python for methods such as __add__

● The LOAD_SPECIAL bytecode is a compound

Low-level Python
def surrogate_load_special(obj, name):
 cls = $type(obj)
 if $has_class_attr(cls, name): # Has class attr
 descriptor = $get_class_attr(cls, name) # Get class attr
 desc_type = $type(descriptor)
 if $has_class_attr(desc_type, '__get__'):
 getter = $get_class_attr(desc_type, '__get__')
 if $type(getter) is FunctionType:
 return getter(descriptor, obj, cls)
 elif desc_type is PropertyType:
 return descriptor$fget(obj)
 else:
 return $descriptor_get(descriptor, obj)
 else:
 return descriptor
 else:
 msg = "'%s' object has no attribute '%s'" % (

cls$__name__, name)
 raise AttributeError(msg)

Optimisation in HotPy

● Concentrate efforts on “Hot Spots”
● Dynamically customise the code
● Avoid doing any work that can be avoided

– Focus more on not doing things at all

– Don't worry too much about doing them faster

Customisation (1)

● Assume that next time a piece of code executes, it
will do so in a “similar” environment to this time.

● Tailor the code for that environment.
● By “environment” we mean the types of variables,

the values of global variables holding classes and
functions, the direction of branches taken and a few
other things

Customisation (2)

● Tracing
– Customisation by flow. Record traces of commonly

executed paths in the program.

● Specialisation
– Replace general instructions with specialised versions

● Specialisation can done by tracing
– E.g. Tracing a branch through a type test is effectively

specialisation.

Traces and Tracing

● Follow actual execution, ignoring the structure of
the program, focuses on the parts of the program
that actually matter.

● Technique of choice for optimising dynamic
languages

● Used by PyPy and several Javascript engines

Tracing Example (1)

def fact(n):
 x = 1
 while n > 1:
 x *= n
 n -= 1
 return x

fact(1000)
import hotpy.trace
hotpy.trace.graph_snapshot(
'/tmp/graph1.gv')

Tracing Example (2)

def mul(a, b): return a * b

def fact(n):
 x = 1
 while n > 1:
 x = mul(x, n)
 n -= 1
 return x

fact(1000)
import hotpy.trace
hotpy.trace.graph_snapshot(
'/tmp/graph2.gv')

Traces (Output of Tracing)

● Calls to functions (and returns) are inlined into the
trace

● Traces are linear and are simpler to optimise than
the complex flow-graphs of functions

● Traces are usually longer than functions
– Exposes more optimisation potential

Guards

● During traces some assumptions are made
– Branch instructions always go the same way

– Call sites always call the same function

● Some of these assumptions will prove to be false so
“guards” must be inserted to ensure correctness

● Guards check that these assumptions are correct.
● If assumption is false then the trace exits.

Trace Management

● When a backwards edge becomes warm:
– Trace it and add it to trace cache

● Decay execution counts over time
– Traces no longer used will then become “cold”

● When a trace becomes cold:
– Mark trace as invalid and discard.

– Limits to trace cache to ~1M (with current settings)

Specialisation of Traces

● Some specialisation of traces is a consequence of
generating the trace.
– Can only record the taken branch of an if statement

– Need to customisation on the value of functions in order
to trace calls to them.

● Further customise by specialising by type
– Replace general bytecode with type-specific one(s)

– Type-specific operation are often a lot faster and can
often be no-ops

Specialisation Example
1. ENSURE TYPE x, slice, exit12

2. t0 = TYPE(x)

3. t1 = t0 IS slice

4. EXIT_IF_FALSE t1, exit13

1. ENSURE TYPE x, slice, exit12

2. t0 = slice

3. t1 = True

4. NO-OP

Redundancy Elimination

● Customisation exposes much of the redundancy in
the Python execution
– Customisation may add some extra redundancy

● Deferred Object Creation:
– Lazily create intermediate values.

– Often these object do not need to be created at all.

● Register Interpreter
– Remove redundant moves to and from the stack.

Deferred Object Creation (1)

● Split VM state into two parts

1. Real in-memory data structures

2. A “recipe” for reconstructing the remaining part

● The “recipe” is a constant over time for any given
location on a trace.

● Only need to generate the “recipe” once

Deferred Object Creation (2)

● Split the VM state so that as much of the delta in the
VM state from one bytecode to the next is
incorporated into the “recipe” and as little as
possible is incorporated into the in-memory part.

● The changes in the in-memory part represent real
work that the VM must do. Changes to the recipe
have no runtime cost (unless we are forced to use
the recipe).

Deferred Object Creation (3)

● For each (low-level) bytecode:
– Modify the recipe to reflect how to recreate the VM.

● If any objects are needed to perform an op:
– Create those objects from the recipe

– Generate the code to do the work

● If bytecode may exit the trace
– Record the recipe at this point

– If no exit is possible, there is no need to record the recipe

Deferring Objects

● Objects have values as well as shape
● These values must be stored somewhere

– Store them in registers

● Storing values in registers allows frames to be
deferred.

● Deferring frames is probably the most powerful
optimisation employed by HotPy.

Deferring Example

● Deferring creation of a tuple:
– Bytecode BUILD_TUPLE 3

– Record in recipe:

– That the stack is now two shallower

– That the top of the stack is a tuple consisting of the
previous 3 items on the stack

A pictorial recipe

Example of Optimisation

● pystones
– Everyone's favourite benchmark :)

● Try it yourself
– python -m test.pystone

● HotPy options to try out:

-Xspecialise -Xtailcall

-Xdefer -Xregister -Xcoalesce

Instruction Counts

● No tracing: 24.7 million instructions
● Tracing (no optimisations): 460 million!

– Many more low-level bytecodes are required

● With Specialisation: 456 million
– Many of these would be trivial remove

● Specialise and DOC: 91 million
– A lot of stack→reg & reg→stack moves

● Specialise, DOC, Register: 23.1 million

Speed

● Not many benchmarks as most of the optimisers are
not very robust yet :(

● Generally about as fast as CPython
– Pystones 25% faster on my netbook

● Lots of optimisations yet to do:
– Dictionary based optimisations

– Unboxing

– An infinity of other things

Conclusions

● HotPy needs to be fast and and very reliable
● Currently, HotPy is fast oror quite reliable
● If you want a faster Python and can't use PyPy then

you need to help develop HotPy:
– Development and patches

– Set up buildbots

– Fix speed.python.org and add HotPy

– Donations

– Any other help you can offer

Thank you listening

Any questions

 www.hotpy.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

