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Who am I?

● Mark Shannon 
● PhD thesis on building VMs for dynamic languages
● During my PhD I developed:

– GVMT. A virtual machine tool kit including a JIT-
compiler generator.

– HotPy (1) A Python VM build with the GVMT.

● I'm currently looking for work in the UK

 



  

HotPy (2)

● HotPy (2) is:
– a branch of CPython (3.3)

– a tracing optimising interpreter

– binary compatible with CPython

– Currently about the same speed as CPython

– Expected to be faster quite soon.

 



  

Why Bother with HotPy (2)?
 (Why not just use PyPy?)

● Binary Compatibility and Portability
● CPython has many C extensions
● CPython can be embedded in other applications
● CPython runs on many platforms
● But CPython is slow(er than PyPy)



  

Binary Compatibility (Informally)

● Drop in replacement for CPython
● Replace CPython executable with HotPy executable 

and it will just work.
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Binary Compatibility (More Formally)

● Full function API
– including those with leading underscore

● ABI compatibility of PEP 384 (at a minimum)
● Layout of the PyThreadState and PyFrameObject 

will change.
● A few C extensions may need a little work

– Particularly code that is very tightly bound to 
CPython such as Cython.



  

High Performance

● For pure Python code expectation is x2 faster 
● When (if) compilation is implemented x5-8
● Dynamic optimisation removes much of the 

overhead of CPython.
● Techniques from all over the place, some my own, 

some pioneered by PyPy, many from the academic 
literature.



  

Optimising the CPython VM



  

An ideal model of the CPython VM.

● The entire state of the VM should be resident in 
heap memory in between bytecodes

– The state of the VM should be fully described by the 
in-memory data structures

– No part of the VM state should be embedded in the C 
stack or kept in a register.

● Each bytecode should be atomic 
– i.e. it should be impossible to observe the state of the VM 

part way through its execution.



  

Atomic Bytecodes.

● An atomic bytecode 
cannot be observed part 
way through its 
execution

● Any calls made during 
the bytecode must be 
tail calls.



  

The Real CPython VM

● Lots of “micro” optimisations
● VM state is embedded in the C stack
● Many bytecodes are compound (not atomic)



  

Making the CPython VM Optimisable

● Before optimising CPython, we must make it 
optimisable

● All bytecodes must be atomic 
● OrOr have equivalent function that is implemented in 

terms of atomic bytecodes
● Full VM state must be resident in heap memory

– About 10% slower.



  

Making CPython bytecodes atomic

● Have to add (about 40) new bytecodes 
● Each performs an atomic operation
● These are not hardware-level operations
● Can perform dictionary access or other intermediate 

level operation
● All can be completely described in terms of their 

effect on VM state.



  

Low-level Python

def surrogate_type_call(cls, args, kws):
    obj = cls.__new__(cls, *args, **kws)
    if $subtype($type(obj), cls):
        res = obj$__init__(*args, **kws)
        if res is not None:
            raise TypeError("__init__() ”   
               “should return None not ”     
               “'%s'" % $type(res)$__name__)
    return obj



  

Low-level Python

● $op() represents a single bytecode

– Not a load of “op” followed by a function call 

– E.g. $type(x) is the type of x, not a call to type()

● obj$attr represents the LOAD_SPECIAL bytecode

– Like load-attr but uses the “special” attribute lookup used 
by Python for methods such as __add__

● The LOAD_SPECIAL bytecode is a compound



  

Low-level Python
def surrogate_load_special(obj, name):
    cls = $type(obj)
    if $has_class_attr(cls, name): # Has class attr
        descriptor = $get_class_attr(cls, name) # Get class attr
        desc_type = $type(descriptor)
        if $has_class_attr(desc_type, '__get__'):
            getter = $get_class_attr(desc_type, '__get__')
            if $type(getter) is FunctionType:
                return getter(descriptor, obj, cls)
            elif desc_type is PropertyType:
                return descriptor$fget(obj)
            else:
                return $descriptor_get(descriptor, obj)
        else:
            return descriptor
    else:
        msg = "'%s' object has no attribute '%s'" % (

cls$__name__, name)
        raise AttributeError(msg)



  

Optimisation in HotPy

● Concentrate efforts on “Hot Spots”
● Dynamically customise the code
● Avoid doing any work that can be avoided

– Focus more on not doing things at all

– Don't worry too much about doing them faster



  

Customisation (1)

● Assume that next time a piece of code executes, it 
will do so in a “similar” environment to this time.

● Tailor the code for that environment.
● By “environment” we mean the types of variables, 

the values of global variables holding classes and 
functions, the direction of branches taken and a few 
other things



  

Customisation (2)

● Tracing
– Customisation by flow. Record traces of commonly 

executed paths in the program.

● Specialisation
– Replace general instructions with specialised versions

● Specialisation can done by tracing
– E.g. Tracing a branch through a type test is effectively 

specialisation.



  

Traces and Tracing

● Follow actual execution, ignoring the structure of 
the program, focuses on the parts of the program 
that actually matter.

● Technique of choice for optimising dynamic 
languages

● Used by PyPy and several Javascript engines



  

Tracing Example (1)

def fact(n):
      x = 1
      while n > 1:
           x *= n
           n -= 1
      return x

fact(1000)
import hotpy.trace
hotpy.trace.graph_snapshot(
'/tmp/graph1.gv')



  

Tracing Example (2)

def mul(a, b): return a * b

def fact(n):
      x = 1
      while n > 1:
          x = mul(x, n)
          n -= 1
      return x

fact(1000)
import hotpy.trace
hotpy.trace.graph_snapshot(
'/tmp/graph2.gv')



  

Traces (Output of Tracing)

● Calls to functions (and returns) are inlined into the 
trace

● Traces are linear and are simpler to optimise than 
the complex flow-graphs of functions

● Traces are usually longer than functions
– Exposes more optimisation potential



  

Guards

● During traces some assumptions are made
– Branch instructions always go the same way

– Call sites always call the same function 

● Some of these assumptions will prove to be false so 
“guards” must be inserted to ensure correctness

● Guards check that these assumptions are correct.
●  If assumption is false then the trace exits.



  

Trace Management

● When a backwards edge becomes warm:
– Trace it and add it to trace cache

● Decay execution counts over time
– Traces no longer used will then become “cold”

● When a trace becomes cold:
– Mark trace as invalid and discard.

– Limits to trace cache to ~1M (with current settings)



  

Specialisation of Traces

● Some specialisation of traces is a consequence of 
generating the trace.
– Can only record the taken branch of an if statement

– Need to customisation on the value of functions in order 
to trace calls to them.

● Further customise by specialising by type
– Replace general bytecode with type-specific one(s)

– Type-specific operation are often a lot faster and can 
often be no-ops



  

Specialisation Example
1. ENSURE TYPE x, slice, exit12

2. t0  = TYPE(x)

3. t1 = t0 IS slice

4. EXIT_IF_FALSE t1, exit13

1. ENSURE TYPE x, slice, exit12

2. t0 = slice

3. t1 = True

4. NO-OP



  

Redundancy Elimination

● Customisation exposes much of the redundancy in 
the Python execution
– Customisation may add some extra redundancy

● Deferred Object Creation:
– Lazily create intermediate values.

– Often these object do not need to be created at all.

● Register Interpreter
– Remove redundant moves to and from the stack.



  

Deferred Object Creation (1)

● Split VM state into two parts

1. Real in-memory data structures

2. A “recipe” for reconstructing the remaining part

● The “recipe” is a constant over time for any given 
location on a trace.

● Only need to generate the “recipe” once



  

Deferred Object Creation (2)

● Split the VM state so that as much of the delta in the 
VM state from one bytecode to the next is 
incorporated into the “recipe” and as little as 
possible is incorporated into the in-memory part.

● The changes in the in-memory part represent real 
work that the VM must do. Changes to the recipe 
have no runtime cost (unless we are forced to use 
the recipe).



  

Deferred Object Creation (3)

● For each (low-level) bytecode:
– Modify the recipe to reflect how to recreate the VM.

● If any objects are needed to perform an op:
– Create those objects from the recipe

– Generate the code to do the work

● If bytecode may exit the trace
– Record the recipe at this point

– If no exit is possible, there is no need to record the recipe



  

Deferring Objects

● Objects have values as well as shape
● These values must be stored somewhere

– Store them in registers

● Storing values in registers allows frames to be 
deferred.

● Deferring frames is probably the most powerful 
optimisation employed by HotPy.



  

Deferring Example

● Deferring creation of a tuple:
– Bytecode BUILD_TUPLE 3

– Record in recipe:

– That the stack is now two shallower

– That the top of the stack is a tuple consisting of the 
previous 3 items on the stack



  

A pictorial recipe



  

Example of Optimisation

● pystones
– Everyone's favourite  benchmark :)

● Try it yourself
– python -m test.pystone

● HotPy options to try out:

-Xspecialise   -Xtailcall

-Xdefer     -Xregister   -Xcoalesce



  



  

Instruction Counts

● No tracing: 24.7 million instructions
● Tracing (no optimisations): 460 million!

– Many more low-level bytecodes are required 

● With Specialisation: 456 million
– Many of these would be trivial remove

● Specialise and DOC: 91 million
– A lot of stack→reg & reg→stack moves

● Specialise, DOC, Register: 23.1 million



  

Speed

● Not many benchmarks as most of the optimisers are 
not very robust yet :(

● Generally about as fast as CPython
– Pystones 25% faster on my netbook

● Lots of optimisations yet to do:
– Dictionary based optimisations

– Unboxing

– An infinity of other things



  

Conclusions

● HotPy needs to be fast and and very reliable
● Currently, HotPy is fast oror quite reliable
● If you want a faster Python and can't use PyPy then 

you need to help develop HotPy:
– Development and patches

– Set up buildbots

– Fix speed.python.org and add HotPy

– Donations

– Any other help you can offer



  

Thank you listening

Any questions

                www.hotpy.org
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