HPU,

Scuence

High-performance computing on
gamer PCs

Yann Le Du, Mariem El Afrit, Laurent Binet, Didier Gourier
(LCMCP, Chimie ParisTech)

EUROPYTHON - 2o

FLORENCE, JUNE 20-26

Framework: EPR imaging for exobiology

Goal: in situ EPR analysis with imaging to select samples on
Mars

Context: EPR imaging for exobiology

2

beach
hydrothermal

spring

™

beach

alernating layers of hvdrothermal
volcanic seduments (suppled) o J/ hydrothermal
and lava flows (grey) (¢) F g springs

- - s Y l ¢

1.0 -0,5 0

The manual processing

The problem to solve

Inverse a Fredholm equation of type 1
r - kKnowm spectrum

¢ : known lineshape r(B) = / (B + Gu)s(x)de
sample

S . unknown matter linear density

oy

Machine learning method:

e teach s givenr
e generate candidates

e combine candidates

The EPR spectrum and the linear density

Q:bbooo‘\
® o
NN
2
Nz
X
0
PR\
.e&"}\;&\f
\) Q0
O«\e&@é\@
S
sample — \
N \’\A

Organic matter

Linear density
10}
08} N lrr]

Convolution with EPR lineshape |24 \ [| /|

YR

02} \ Jl \ ’,"

EPR spectrum

Inverse the integral equation

e

r(B) = / c(B+ Gr)s(x)dr
J sample

With eradient Without Density of radicals Noise
e The Hadamard conditions e Physical constraints :
o existence o positive density

o unicity o special shapes to

o stability reconstruct

ANN : advantages

e Resistance to noise
o comparison with optimal filters, Wiener deconvolution

e Parallelization

oo oo
Sy J o0 © =

e Adapted to the context

— True
— ANN
- -« Fourier

O .
I

03
0.2
0.1
e Universal approximation = 0 ~———= By '

o better than polynomial anc@trlgonometrlc ngchztlons 20

o convergence in N7 instead of N -

e Very fast forward

Normalized density
-
Ot
Illlllllllllllllllll

Modeling the machine and the density

Spectrum r
r(B) = / c(B+ Gx)s(x)dr
J sample

convolution kernel ¢ = lineshape

10} 10} A 10} myk 10}
l” l'. '| | ‘ ' |I
08k [\ 08k M 08t l L 08t ,
J | | |
0.6} [0.6} [0.6} ' \ ”l 0.6} ’l
J | /] |\ | /
0.4} (" foo4f ""ﬁ —J \/ f 04 ‘ \ . f 04t ~ | | — ,’1 f
U \ J ™~ /0 \—
02t ['l 02t 0.2 AN AR o2kt /N /|| |' /
O —— o P h ™ / \ /[|
. l Al . . , d / L1 AN I
20 40 60 80 100 20 40 60 80 100 20 40 60 80 10 20 40 60 80 100
10¢ ."""| 10} 10¢ N 1.0} A\
08t ost / 'l 08t '." \ \ 0t [\ A '
| \ / P f \ / WA
06f "' A 06F \/ " f ‘ 06} A '\' I\ 06} [\ |]]
' v /SN f I
04f, ,‘ | f 04l l u‘ fosf /N 'nl [\, oa} a ' [J d
N .: SNCW s |
02f \ | . [l o2t ' 02f NG/ 0af ! , '
- / \ r~ | l ' - " v l U
Y F

20 4.0 6;3 80 160 2.0 4.0 6.0 8;] 1(.110 2.0 4.0 6&! 8‘0 160 2.0 4;'.l 6‘0 8‘0 160
The density s : quasi-splines

PyLab (Scipy)

Neural networks and matrix algebra

Neuron
@ nput
@ hidden
Ooutput

[RUSIS JO uoryesedor]

Neural networks and matrix algebra

D y=171 (Z?zl W; %)

Neural network computations:
1. matrix of weights M and input data vector v
2. map activation function f on all of the product Mv

Deconvolution: Reservoir computing

Input / recurrent artificial neural network / output neural layer
- fly eye modularity / one output for each density point.

(
Convolved) >
signal

Deconvolved linear
density

Deconvolution model:
Reservoir computing

Input / recurrent artificial neural network / output neural layer -
modularity fly eye / one output for each density point.

A7 : 4 b
4! 111 14/ eq 4! out

e sparse random

: O
directed graph A (& e

O
® networkx ™ . /

Python library A - O
0l ONG|F0
Os
)

/ /NN
000 00O

Matrix approach: necessary conditions
to solve the problem

r(B) = / | c(B+ Gx)s(x)de
J sample

Finding the minimum

e Optimize the reservoir's weights

o Many local minima

A swarm of reservoir Configurations

Explores the output Weight space. O Need 3 glObaI Optimizer:
5| — ® m genetic algorithm

G XY : : :

£ O m differential evolution
-

Gradient descent| | Local n_l'nimum

e

N A

V

The three fundamental algorithms

e Modular reservoir computing
o fly eye architecture
o deconvolution point by point

L e Particle swarm
& o explore reservoir's initial parameter

S pa Ce Crossing Over Points
e Genetic crossover by N A b
differential evolution 4 (Y
o move the swarm's f /
particles (birds) { { (

» Parallelize these algorithms on GPUs NS W\

Network committee: choose one solution

e Every worker produces a reservoir candidate, with a fly eye
structure.

e \With cross validation : check how a fly-eye reservoir
performs on examples it has never seen

o Fully parallelized : S,.,j = Wout,i Weq W Rj (PyCUDA)

e Build an with k : reservoir number, n : ommatidium
number, is the possibilities of success of reservoir

o argmin parallel row reduction on Q, _

Fly eye reservoir final layer structure

e The fly eye is made of ommatidia

e Each density point reconstructed is
an ommatidia output

Output computation is

parallelized :
/O\s.= w.. W _W_R
i ,/ q in
O AIS computed in parallel
\ /
O
™0
PvCUDA

Parameter initialization
(on the master)

Network
Gradient descent
Differential evolution
Particle swarm
optimization
Learning examples

Decide
which birds
to replace

Train the
new
generation

Workers connect to
master and ask for
initialization parameters

\ 4

Move
forward the
swarm

The initialization of
reservoir matrices
(W) for each bird

(on CPUL)

Train the first
swarm
generation

Compute the
stabilized
reservoir matrix
for each bird

(Weq)

Send all the
initialized
data to the
GPU

Reach the
max
movements

Yes

¥

Select the
best bird

'

Train the best
bird and save
the
intermediate
errors

l

Send results to
the CPU

l

When connected to
master, the worker
sends stored results
and asks for new
parameters

On the master, a
high level
selection to
construct a super
bird

Literate Programming

D. Knuth, 1984 :

"The practitioner of literate programming can be regarded as an
essayist, whose main concern is with exposition and excellence of
style. Such an author, with thesaurus in hand, chooses the names
of variables carefully and explains what each variable means. He
or she strives for a program that is comprehensible because
its concepts have been introduced in an order that is best for
human understanding, using a mixture of formal and informal
methods that reinforce each other.”

Simple example: add vectors

__global wvoid sumVectors (float *u, float *v, float *w)

{

int 1 = threadldx.x;
wli] = ufl[i] + v[i];

}

2a

3 Defining the kernel that sums the vectors on the GPU

We’ll begin with that part, because it’s fun. So how do we proceed 7 We should first be reminded that
vectors are, in practice, lists of numbers, say

i U0
=\ uq v=| vy
u9 U9
which give
ug + Vo
ut+v=1\| u+uv (1)
ug + Vg

The reason for this comes from the fact that vectors are not simply lists of numbers, but describe an
entity that lives in a vector space and that can thus be written as a linear combination of some basis
vectors. We thus have

U= upep + u1eq + uges
U = vpep + vi1e1 + veer

which of course leads directly to
u+v=(up+vo)eg + (ug + vy1)ey + (ug + vg)es

proving the component-wise addition of equation (1).

We should thus take three arguments, u, v and w and add the first two component-wise w; = u; + v;,
where 7 1s an index that runs from 0 to the length of © minus 1. So because we are building a kernel, we
use C, so we can map the last equation to C using:

(Sum the vector component of uli]l and v[i] to give w[i] 2a)= (2d)
wli] = uli] + v[i];

2c

Now, because each thread on the GPU computes the same kernel, yet has access to its own identity
— that 1s its position in the block —, we can define the index i to be the thread x coordinate in the block,

(Define i as the thread x index 2b)= (2d)
int 1 = threadIdx.x;

The parallelization 1s right there: all threads compute the same thing, 1.e. implement the same
function, but we can vary the argument they crunch thanks to an index that comes directly from
each thread’s position inside the computational block. Thus, if one needs to add vectors with, say, n
components, it 1s straightforward to define a computational block of size (n,1,1), so that each of the
n threads works on a different vector component. We should thus make sure that the number of such
coordinates corresponds to the length of u (which is the same as that of v and u):

(Define the block size of the threads running the computation as len(u) 2¢)=
theBlockSize = (len(u),1,1)

The kernel is called with three arguments, the vectors u, v and w, which on the C side take the form

of pointers. The function doesn’t return anything, because it modifies w directly in memory. We'll call
the kernel sumVectors:

(Define the sum kernel on u, v and w 2d)= (1)
__global__ void sumVectors(float *u, float *v, float *w)

{
(Define i as the thread x index 2b)

(Sum the vector component of u[i] and v[i] to give w[i] 2a)

Lit. Prog. : maitriser la complexite

E. Dijkstra, 1974

"...one hopes that tomorrow’s programming languages will differ greatly
from what we are used to now: to a much greater extent than hitherto they
should invite us to reflect in the structure of what we write down all abstractions
needed to cope conceptually with the complexity of what we are
designing.

[...]JIn computer programming our basic building block has an associated
time grain of less than a microsecond, but our program may take hours of
computation time. | do not know of any other technology covering a ratio of
10710 or more: the computer, by virtue of its fantastic speed, seems to be
the first to provide us with an environment where highly hierarchical
artefacts are both possible and necessary. This challenge, viz. the
confrontation with the programming task, is so unique that this novel
experience can teach us a lot about ourselves. It should deepen our
understanding of the processes of design and creation, it should give
us better control over the task of organizing our thoughts.”

Reproducible computational research

D. Donoho, 2008 :

"Scientific Computation is emerging as absolutely central to the
scientific method. Unfortunately, it is error-prone and currently
iImmature: traditional scientific publication is incapable of
finding and rooting out errors in scientific computation,
this must be recognized as a crisis. Reproducible
computational research, in which the full computational
environment that produces a result is published along with
the article, is an important recent development, and a
necessary response to this crisis."

_L Research
~— Computation

The software

System

e Linux (Ubuntu server & desktop)
o Ext4 /

e Btrfs /data* Analysis

e Scipy, iPython

Development e Sage, Mathematica
e Mayavi2, Asymptote
e Vim e Google Docs
e Python, PyCUDA, Scikits, CUV
e C, Cython
o git

e Noweb (literate programming)

Sage and Cython

e Example : simple Monte-Carlo integrator

mcInt = lambda f£,a,b,n:

(b-a) /n*sum([f(x) for x 1in

[(b—-a) *random () + a for

in range(n)]])

O . 4 1

from random import random

def mcInt2(f,a,b,n):

for in range(n):
s += f£f((b - a) * random()

s *= (b - a) / float(n)

return s

+ a)

TSy

from random import random

cdef float f(float x):

return x*x

def cython mcInt2(float a,float b,int n):
cdef float s = 0

for j in range (n):

s += £((b - a)

* random () + a)

s *= (b - a) / float (n)

return s

The System

e Linux
o rules HPC

o CERN: 1GB/s of data, computing grid of 100,000 computers
o so easy to play with and adapt to needs

e BTRFS
o instant RAIDO, excellent performance
o no problem for static storage/read
o git feeling

o Ext4
o well tested, reliable for OS

Cython Save | Save & quit | Discard & quit |

File... ~| Action... ~| Data... ~| sage ~| O Typeset & Print m m m m m

mcInt = lambda f,a,b,n:(b-a)/n*sum([f(x) for x in [(b-a)*random()+a for _ in range(n)l]])

time s=[mcInt(lambda x: x*x,0,1,1000) for _ in range(1000)]
Time: CPU 11.82 s, Wall: 11.84 s

from random import random

def mcInt2(f,a,b,n):
for in range(1000):
s =0
for _in range(n):
s += f((b - a) * random() + a)
s *= (b - a) / float(n)
return s

time mcInt2(lambda x: x*x,0,1,1000)

0.33307028410372003
Time: CPU 12.14 s, Wall: 12.16 s

%scython
from random import random

cdef float f(float x):
return x*x

def cython mcInt2(float a,float b,int n):
cdef float s = 0
for j in range(n):
s += f((b - a) * random() + a)
s *= (b - a) / float(n)
return s

__work sag...3 code saged4l spyx.c __work sag...ode saged4l spyx.html

time sc=[cython mcInt2(0,1,1000) for _ in range(1000)]
Time: CPU 0.12 s, Wall: 0.12 s —

|»

feature release
develop branches hotfixes master

Git versioning

e Decentralized but
centralized

e The main branches
o master
o develop

From this point on,
“next release”
means the release

after 1.0

e Supporting branches
o feature branches
o release branches
o hotfix branches

Source:
Vincent Driessen

The HPU4Science cluster

The master :
e centralize data, 20TB
e frame calculations
e combine all the candidates

6 workers :
e 3to 7 GPUs
o3to7 HPUs
e all run the same algorithm
e save intermediate data

Linux OS (Ubuntu Server)

inning...

In the beg

The GPU cards

Choice NVIDIA : GTX285, GTX295, GTX480, GTX580, GTX590

Master : data centralization

The worker03

The motherboard : Gigabyte GA-X58A-
UD9

LO
-
el
QO
'
-
O
=
O
L
T

Problems

e temperature
o risers
o air circulation

e electric overconsumption
o calculate the accurate
consumption

e defective components
o extensive tests

Problem 1 : temperature

Temperature at full load (all CPU cores, all disks, all GPUs)

Master (1x295)

Worker 3 (4x580...

Worker 2 (3x480...

Worker 1 (3x285...

55 65 75 85 95

Temperature (degrees Celsius)

Distributed architecture

Data room

Development workstations

WorkerO1

HPU is 3 GPUs
| GTX480 and 1
GPU

HPU is 3 GPUs
4 GTX285and 1
GPU

Worker02

@, [HPUis 2 cPUs
>« |and 1 GPU

HPU is 4 GPUs
-{ GTX580 and 1
CPU

Worker03

HPU is 4 GPUs
HPU is 3 GPUs .| GTX580 and 1
GTX590, 1 CPU
GTX580 and 1
HPU is 3 GPUs
.| 6TXx590, 1
GTX580 and 1
CPU

Worker05

Software components for non-
computational cluster activity

e Data storage/retrieval
o Python dictionaries with cPickle
o Karrigell server for analytical/visualization requests

e Communication worker/master
omultiprocessing module
o only the Client requests actions
o update code

e Instant snapshots of activity

Compare HPU4Science/\Watson

HPU4Science Watson IBM

4
'71 " -
8 \ -
g : p 4
£ o [~
RN | -
= Sk |
7ambl

oy o

AEYARS v
\ ; £ ¥ - —
J=" - |
\ e 4 ‘

cost: €30,000 cost: approx. €22 million
power: 80 TFLOPS

VS

power: 35 TFLOPS

power/€: 3.7 MFLOPS/€
power/€: 1,170 MFLOPS/€

storage: 20 TB
storage: 20 TB

Short-term evolution (6 months)

e test OpenCL with PyOpenCL

e open source the code (CeCILL ?)

e move to GTX670 cards

e continue developing other applications
o with machine learning

o or for classical processing methods

e golden rule: stay close to "hot spring vents”

May Python help us find the Oracl! |

The HPU4Science team

The Core

Yann Le Du, CNRS engineer, launched the HPU4Science project in 2009.

Mariem E1 Afrit, joined the project early in 2010 as an under
internship financed by CNES and then by ANR ORIGINS/ENUSIM. She is now h

T

for a PhD which should begin in fall 2011 or beginning 2012.

Z&:fa:' Binet, Chimie ParisTech associate professor, is an EPR and material
ience expert at LCMCP/Chimie ParisTech and a main contributor to the use of
PR in exobiol

I"l

)

\
\/
-

AT
J .
=

Iijinr sourier, Chimie ParisTech professor, is an EPR expert and mate
ience expert at Lu” P/Chimie ParisTech and he initiated the use of SPR of

ca:bo: in exobiology.

f'l

Herveé Vezin, CNRS research director, is continuous and pulsed wave EPR ex
he LASIR in Lille, and an old time close collaborator of the EPR group a
1s the ANR ENUSIM/ORIGIN project leader, and is equipped with

uker EPR spectrometers, including an imageing continuous wave
p .

The HPU4Science team

The Crust

5

(9]

Yves Frapart CNR I
’

lab is equipped with mul

He has the first Bruker

and at the time the most power f,- on

m
3
(le]

}
3

m
"
}

]
1

M rt ;’Il

e I Sl

pellsal
F
m
o m
a1
&
-
m
a1

The Lithosphere

Jean-Francois Engrand, Paris 6 technician, is the man who knows all about the
non compu hardware, and who always finds a solution to all the problems that

’
lurk in those dark region

0]

The Biosphere

Fréderic Mentink, a PhD student at LCMCP/Chimie ParisTech working on gquantum

information and Electron Paramagnetic Resonance, 1s an apt p"ntnc:ap”c

working on giving us the best shots while pondering on the potentialiti

Diane Robert-Magnenan, philosophy undergrad and artist, joined the proj

2009, and has contributed in many artistic ways, including the d-ah-:gs

third Ars Technica paper to be published at the end of May.

and 1is

7{ @
¥ Ca,
i

http://hpu4science.org

Yann Le Du, Mariem El Afrit et al.

ANR ENUSIM/ORIGIN 2009-2012, CNES RTS-Exobiologie

Communications

Scientific communications

e invited conference Europython 2011, june

e seminar Aristote, Polytechnique, june 2011

e seminar CNES/IDRIS, assimilation methods, june 2011
e conference EuroScipy 2011, august

e seminar JDEVLOG 2011, september

Communications Information Technology
e series of three articles in Ars Technica (avril/mai 2011) :
High Performance Computing on Gamers PC

