

High-performance computing on
gamer PCs

Yann Le Du, Mariem El Afrit, Laurent Binet, Didier Gourier
(LCMCP, Chimie ParisTech)

Framework: EPR imaging for exobiology

Goal: in situ EPR analysis with imaging to select samples on
Mars

Context: EPR imaging for exobiology

The manual processing

Fourier processing

Inverse a Fredholm equation of type 1

Machine learning method:

● teach s given r
● generate candidates

● combine candidates

The problem to solve

r : knowm spectrum

c : known lineshape

s : unknown matter linear density

The EPR spectrum and the linear density

Convolution with EPR lineshapeEPR spectrum

Inverse the integral equation

● The Hadamard conditions
○ existence
○ unicity
○ stability

● Physical constraints :
○ positive density
○ special shapes to

reconstruct

ANN : advantages
● Resistance to noise

○ comparison with optimal filters, Wiener deconvolution

● Parallelization

● Adapted to the context

● Very fast forward

● Universal approximation

○ better than polynomial and trigonometric functions
○ convergence in N-1 instead of N -1/d

Modeling the machine and the density

The density s : quasi-splines
PyLab (Scipy)

convolution kernel c = lineshape

Spectrum r

Neural networks and matrix algebra

Neural networks and matrix algebra

Neural network computations:
1. matrix of weights M and input data vector v
2. map activation function f on all of the product Mv

Deconvolution: Reservoir computing
Input / recurrent artificial neural network / output neural layer

- fly eye modularity / one output for each density point.

Deconvolution model:
Reservoir computing

Input / recurrent artificial neural network / output neural layer -
modularity fly eye / one output for each density point.

● sparse random

directed graph

● networkx
Python library

Matrix approach: necessary conditions
to solve the problem

linearization

Finding the minimum

● Optimize the reservoir's weights

○ Many local minima

○ Need a global optimizer:
■ genetic algorithm
■ differential evolution

The three fundamental algorithms
● Modular reservoir computing

○ fly eye architecture
○ deconvolution point by point

● Particle swarm
○ explore reservoir's initial parameter

space

● Genetic crossover by
differential evolution

○ move the swarm's
particles (birds)

Parallelize these algorithms on GPUs

Network committee: choose one solution

● Every worker produces a reservoir candidate, with a fly eye
structure.

● With cross validation : check how a fly-eye reservoir
performs on examples it has never seen

○ Fully parallelized : Si,j = Wout, i Weq Win Rj (PyCUDA)

● Build Qk,n with k : reservoir number, n : ommatidium

number, is the possibilities of success of reservoir

○ argmin parallel row reduction on Qk,n

Fly eye reservoir final layer structure

● The fly eye is made of ommatidia

● Each density point reconstructed is
an ommatidia output

Output computation is
parallelized :

 Si = Wout, i Weq Win R

All Si computed in parallel

PyCUDA

Literate Programming

D. Knuth, 1984 :

"The practitioner of literate programming can be regarded as an
essayist, whose main concern is with exposition and excellence of
style. Such an author, with thesaurus in hand, chooses the names
of variables carefully and explains what each variable means. He
or she strives for a program that is comprehensible because
its concepts have been introduced in an order that is best for
human understanding, using a mixture of formal and informal
methods that reinforce each other."

__global__ void sumVectors(float *u, float *v, float *w)

{
 int i = threadIdx.x;
 w[i] = u[i] + v[i];
}

Simple example: add vectors

Lit. Prog. : maîtriser la complexité

E. Dijkstra, 1974
"...one hopes that tomorrow’s programming languages will differ greatly
from what we are used to now: to a much greater extent than hitherto they
should invite us to reflect in the structure of what we write down all abstractions
needed to cope conceptually with the complexity of what we are
designing.

[...]In computer programming our basic building block has an associated
time grain of less than a microsecond, but our program may take hours of
computation time. I do not know of any other technology covering a ratio of
10^10 or more: the computer, by virtue of its fantastic speed, seems to be
the first to provide us with an environment where highly hierarchical
artefacts are both possible and necessary. This challenge, viz. the
confrontation with the programming task, is so unique that this novel
experience can teach us a lot about ourselves. It should deepen our
understanding of the processes of design and creation, it should give
us better control over the task of organizing our thoughts."

Reproducible computational research

D. Donoho, 2008 :

"Scientific Computation is emerging as absolutely central to the
scientific method. Unfortunately, it is error-prone and currently
immature: traditional scientific publication is incapable of
finding and rooting out errors in scientific computation;
this must be recognized as a crisis. Reproducible
computational research, in which the full computational
environment that produces a result is published along with
the article, is an important recent development, and a
necessary response to this crisis."

The software

Development

● vim
● Python, PyCUDA, Scikits, CUV
● C, Cython
● git
● Noweb (literate programming)

Analysis

● Scipy, iPython
● Sage, Mathematica
● Mayavi2, Asymptote
● Google Docs

System

● Linux (Ubuntu server & desktop)
● Ext4 /
● Btrfs /data*

Sage and Cython

● Example : simple Monte-Carlo integrator

mcInt = lambda f,a,b,n:

(b-a)/n*sum([f(x) for x in [(b-a)*random()+ a for _ in range(n)]])

%cython
from random import random

cdef float f(float x):
 return x*x

def cython_mcInt2(float a,float b,int n):
 cdef float s = 0
 for j in range(n):
 s += f((b - a) * random() + a)
 s *= (b - a) / float(n)
 return s

from random import random

def mcInt2(f,a,b,n):
 s = 0
 for _ in range(n):
 s += f((b - a) * random() + a)
 s *= (b - a) / float(n)
 return s

The System

● Linux
○ rules HPC
○ CERN: 1GB/s of data, computing grid of 100,000 computers
○ so easy to play with and adapt to needs

● BTRFS
○ instant RAID0, excellent performance
○ no problem for static storage/read
○ git feeling

● Ext4

○ well tested, reliable for OS

Source:
Vincent Driessen

Git versioning

● Decentralized but
centralized

● The main branches

○ master
○ develop

● Supporting branches

○ feature branches
○ release branches
○ hotfix branches

The HPU4Science cluster

The master :
● centralize data, 20TB
● frame calculations
● combine all the candidates

6 workers :

● 3 to 7 GPUs
○ 3 to 7 HPUs

● all run the same algorithm
● save intermediate data

Linux OS (Ubuntu Server)

In the beginning...

The GPU cards
Choice NVIDIA : GTX285, GTX295, GTX480, GTX580, GTX590

Master : data centralization

The worker03

The motherboard : Gigabyte GA-X58A-
UD9

The worker05

Problems

● temperature
○ risers
○ air circulation

● defective components
○ extensive tests

● electric overconsumption
○ calculate the accurate

consumption

Problem 1 : temperature

Distributed architecture

Software components for non-
computational cluster activity

● Data storage/retrieval
○ Python dictionaries with cPickle
○ Karrigell server for analytical/visualization requests

● Communication worker/master

○ multiprocessing module
○ only the Client requests actions
○ update code

● Instant snapshots of activity

Compare HPU4Science/Watson

HPU4Science

Watson IBM

cost: approx. €22 million
power: 80 TFLOPS

power/€: 3.7 MFLOPS/€

storage: 20 TB

cost: €30,000

power: 35 TFLOPS

power/€: 1,170 MFLOPS/€

storage: 20 TB

vs

Short-term evolution (6 months)

● test OpenCL with PyOpenCL

● open source the code (CeCILL ?)

● move to GTX670 cards

● continue developing other applications
○ with machine learning
○ or for classical processing methods

● golden rule: stay close to "hot spring vents"

May Python help us find the Oracle !

The HPU4Science team

The HPU4Science team

http://hpu4science.org
Yann Le Du, Mariem El Afrit et al.

ANR ENUSIM/ORIGIN 2009-2012, CNES RTS-Exobiologie

Communications

Scientific communications

● invited conference Europython 2011, june
● seminar Aristote, Polytechnique, june 2011
● seminar CNES/IDRIS, assimilation methods, june 2011
● conference EuroScipy 2011, august
● seminar JDEVLOG 2011, september

Communications Information Technology
● series of three articles in Ars Technica (avril/mai 2011) :

High Performance Computing on Gamers PC

