
Viri
Remote execution of Python scripts

Every time you use Viri, God kills a sysadmin



About me
Python experience
• XML
• Application integration
• Django

o i18n
• Google App Engine

Working at NTT Europe
• We administer thousands 

of computers.
• Which means lots of 

repetitive work.
• As a developer, I try to 

automate processes. garcia.marc@gmail.com
http://vaig.be



Talk summary

• What is Viri?
o Motivation
o Features
o Real case examples

• How is Viri?
o Components
o Security

• Using Viri
o Viri scripts
o Commands and options
o Extra features



What is Viri?



Motivation

Automate administration of large sets of hosts 
(e.g. datacenters) using Python scripts.



Which means, replacing...

...lots of repetitive tasks...

...a single creative task

by



Viri overview
Viri is in BETA status, not ready for production yet, but very 
close.

• Python 3 (no other libraries/dependencies)
• XML-RPC (Python provides client/server)
• TLS (for security)
• GPLv3

• Multiplatform
o Some packaging pending (specially for Windows)

• Custom packaging of Python 3 required
o Pending for some systems (e.g. Debian 5)



Features
• Automation of tasks over a large set of computers using 

Python scripts.
o Script deployment
o Transfer of required data files
o On-demand or scheduled execution
o Recording execution history



Real case examples

Gather system data and send to a central location:
• System (Architecture, OS, etc)
• Network (IP addresses, networks, etc)
• User access
• Log information

Implement actions that require per host operations:
• Add users to all hosts /root/.ssh/authorized_keys
• Changes to network configuration
• Complex operations:

o Parse apache config file
o Check for errors in a specific directive
o Fix it!



Any brilliant idea?



How is Viri?



Viri components

viric
User interface, command line utility.

viric execute test.py --host=10.0.0.9

Can be integrated with third-party apps.

virid
Daemon running on remote hosts
• Receives scripts and data
• Records history
• Returns results
• Controls exceptions



Execution workflow

Execution request

Script return

Error and traceback



Integration with third-party apps
Viri daemon uses XML-RPC. Integrating an application (e.g. a 
Django app) to communicate with daemons is as easy as 
writting a XML-RPC client.

import xmlrpc.client

def execute_script_by_id(server_url, script_id):
    proxy = xmlrpc.client.ServerProxy(url)
    return proxy.execute({'script_id': script_id})

print(execute_script_by_id(
    url='https://10.0.0.9:6808/',
    script_id='99154c826fca745be859c6481a5f87631e4b2b78'))

Actually a little bit more difficult, because we need to 
authenticate the client, but Viri client is a great example.



Is Viri secure?
Communication is encrypted using TLS.
Viri daemon requires authentication using a PKI. 



Using Viri



Installation
RHEL / CentOS (version 5, so far)

/etc/yum.repos.d/
wget http://www.viriproject.com/redhat/Viri.repo
yum install viri

Debian (version 6 so far)

echo "deb http://www.viriproject.com/debian squeeze main"
>> /etc/apt/sources.list 
apt-get update apt-get install viri



Creating a PKI

OpenSSL can do everything we need.

Certification Authority
• Create a private key
• Self sign it and create the certificate
• Sign certificates of users

Users
• Create the private key
• Create the certificate signing request

Daemon instances
• Create a self signed private key



Viri scripts
import os

class ViriScript:
    hello_file = '/tmp/viri.hello'

    def say_hello(self):
        with open(self.hello_file) as f:
            f.write('Viri was here!\n')

    def run(self):
        if not os.path.isfile(self.hello_file):
            self.say_hello()
            return 'Viri said hello'
        else:
            return 'Viri has already been here'



Basic viric commands
viric COMMAND [OPTIONS]

• help
o Show usage information

• ls
o Show installed scripts
o Show copied data files

• put
o Send scripts / data files

• get
o  Downloads scripts / data files

• execute
o Executes a script



Basic viric options
viric COMMAND [OPTIONS]

• --host
o Remote host IP or domain

• --port
o Remote port (Default is 6808)

• --data
o On some commands like ls, put or get, specifies that the 

operation is for data files instead of scripts.



Base script
Special __base__.py script:

class ViriScript:
    def custom_log(self, msg):
        with open('/tmp/viri.custom_log', 'a') as f:
            f.write('%s\n' % msg)

./viric put __base__.py --host=10.0.0.9

All scripts inherit from it:

class ViriScript:
    def run(self):
        # do something
        self.custom_log('I did something')



Scheduling

Special __crontab__ data file:

./viric put --data __crontab__ --host=10.0.0.9

Cron syntax (using script id):

# daily at midnight
0 0 * * * 99154c826fca745be859c6481a5f87631e4b2b78

# Just once, on January 1st, 2015 at 9:00
0 9 1 1 * 2015 99154c826fca745be859c6481a5f87631e4b2b78



To conclude



Coming soon

• Use sqlite to manage daemon datat
• Windows

o Make fixes to make the daemon run as a Windows 
service

o Package for Windows (installer)
• Packages for more UNIX systems

o Debian 5, BSD, Mac OS, etc.

... and make the first release.



Other short term plans

• Support full cron syntax

• Save user who requests executions

• Create a public repository for scripts

• Performance optimizations

• Create a Viri community

• Contribute fixes back to Python

More ideas?



Contributing

Start hacking:
git://github.com/garcia-marc/viri.git

Discuss ideas:
http://groups.google.com/group/viri-users

Submit bug reports:
https://github.com/garcia-marc/viri/issues/

Share your scripts:
Publish them anywhere, a public repository will be available 
when having a community



So, will God really kill sysadmins?

No! He will convert them in Python ninjas,
and they will write excellent Viri scripts.


