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A social network is a structure composed by actors and their relationships

Actor: person, organization, role ...
Relationship: friendship, knowledge...

A social networking system is system allowing users to:
• construct a profile which represents them in the system; 
• create a list of users with whom they share a connection  
• navigate their list of connections and that of their friends

(Boyd, 2008)

So, what is a complex network?

A complex network is a network with non-trivial topological features—
features that do not occur in simple networks such as lattices or random 
graphs but often occur in real graphs. (Wikipedia). Foggy.



COMPLEX 
NETWORKS

• Non-trivial topological features (what are topological features?)

• Simple networks: lattices, regular or random graphs

• Real graphs

• Are social networks complex networks?

A complex network is a network with non-trivial topological features—features 
that do not occur in simple networks such as lattices or random graphs but often 
occur in real graphs.



TOOLS
•  

•  

• Matplotlib

• IPython

• NetworkX
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p = v0 ,…,vk (vi−1,vi )∈EPath

Path Length: length(p) Set of paths from i to j: Paths(i, j)

Shortest path length: L(i, j) = min length(p) p∈Paths(i, j){ }( )
Shortest/Geodesic path:

i

j





Average geodesic distance
  
(i) = (n −1)−1 L

k∈V{i}
∑ (i, j)

Average shortest path length
 
 = n−1 (i)

i∈V
∑

Characteristic path length
 CPL = median (i) i ∈V{ }( )
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degree

number of paths!



CLUSTERING 
COEFFICIENT

Local Clustering Coefficient Ci =
ki
2( )−1T (i)

T(i): # distinct triangles with i as vertex
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Ak⎡⎣ ⎤⎦ij number of paths of length k from i to j

[A3]ii
All paths of length 3 starting 
and ending in i → triangles



DEGREE 
DISTRIBUTION

• Every “node-wise” property can be studies as an average, but it is 
most interesting to study the whole distribution.

• One of the most interesting is the “degree distribution”

px =
1
n
# i ki = x{ }



• Citation networks

• Biological networks

• WWW graph

• Internet graph

• Social Networks
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Power-Law: ! gamma=3

Many networks have 
power-law degree distribution. pk ∝ k−γ γ >1

kr = ?

log-log plot



Generated with random generator

80-20 Law

Few nodes account for the vast majority of links

Most nodes have very few links

This points towards the idea that we have a core with a fringe of 
nodes with few connections.

... and it it proved that implies super-short diameter



HIGH LEVEL 
STRUCTURE

Core

Isolated communityIsle



CONNECTED 
COMPONENTS

Most features are computed on the core

Directed/Undirected
Undirected: strongly connected = weakly connected

Directed: strongly connected != weakly connected

The adjacency matrix is primitive
iff the network is connected
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For small k power-laws do not hold

For large k we have 
statistical fluctuations

Moreover, many distributions are wrongly identified as PLs



OSN Refs. Users Links <k> C CPL d γ r
Club Nexus
Cyworld
Cyworld T
LiveJournal
Flickr
Twitter
Orkut
Orkut
Youtube
Facebook
FB H
FB GL
BrightKite
FourSquare
LiveJournal
Twitter
Twitter

Adamic et al 2.5 K 10 K 8.2 0.2 4 13 n.a. n.a.
Ahn et al 12 M 191 M 31.6 0.2 3.2 16 -0.13
Ahn et al 92 K 0.7 M 15.3 0.3 7.2 n.a. n.a. 0.43

Mislove et al 5 M 77 M 17 0.3 5.9 20 0.18
Mislove et al 1.8 M 22 M 12.2 0.3 5.7 27 0.20
Kwak et al 41 M 1700 M n.a. n.a. 4 4.1 n.a.

Mislove et al 3 M 223 M 106 0.2 4.3 9 1.5 0.07
Ahn et al 100 K 1.5 M 30.2 0.3 3.8 n.a. 3.7 0.31

Mislove et al 1.1 M 5 M 4.29 0.1 5.1 21 -0.03
Gjoka et al 1 M n.a. n.a. 0.2 n.a. n.a. 0.23
Nazir et al 51 K 116 K n.a. 0.4 n.a. 29 n.a.
Nazir et al 277 K 600 K n.a. 0.3 n.a. 45 n.a.

Scellato et al 54 K 213 K 7.88 0.2 4.7 n.a. n.a.
Scellato et al 58 K 351 K 12 0.3 4.6 n.a. n.a.
Scellato et al 993 K 29.6 M 29.9 0.2 4.9 n.a. n.a.

Java et al 87 K 829 K 18.9 0.1 n.a. 6 0.59
Scellato et al 409 K 183 M 447 0.2 2.8 n.a. n.a.

Online Social Networks
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p

Watts-Strogatz Model
In the modified model, we only add the edges.

ki =κ + si

Edges in 
the lattice # added

shortcuts

C→ 3(κ − 2)
4(κ −1)+ 8κ p + 4κ p2

 
 ≈ log(npκ )

κ 2p
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BARABASI-ALBERT-MODEL(G,M0,STEPS)
    FOR K FROM 1 TO STEPS
        N0 ← NEW-NODE(G)
        ADD-NODE(G,N0)
        A ← MAKE-ARRAY()
        FOR N IN NODES(G)
            PUSH(A, N)
            FOR J IN DEGREE(N)
                PUSH(A, N)
        FOR J FROM 1 TO M
            N ← RANDOM-CHOICE(A)
            ADD-LINK (N0, N)

Barabási-Albert Model

pk ∝ x−3

No analytical proof available

 
 ≈ logn

log logn

C ≈ n−3/4

Scale-free entails
short CPL

Transitivity disappears
with network size

Connectedness 
Threshold

logn
log logn



ANALYSIS

• There are many network features we can study

• Let’s discuss some algorithms for the ones we studied so-far

• Also consider the size of the networks ( > 1M nodes ), so algorithmic 
costs can become an issue



from heapq import heappush, heappop
# based on recipe 119466
def dijkstra_shortest_path(graph, source):
    distances = {} 
    predecessors = {}
    seen = {source: 0}
    priority_queue = [(0, source)]

    while priority_queue:
        v_dist, v = heappop(priority_queue)
        distances[v] = v_dist
        
        for w in graph[v]:
            vw_dist = distances[v] + 1
            if w not in seen or vw_dist < seen[w]:
                seen[w] = vw_dist
                heappush(priority_queue,(vw_dist,w))
                predecessors[w] = v

    return distances, predecessors

O(m· pushQ + n·  ex-minQ)=O(m log n + n log n)

Dijkstra Algorithm (single source shortest path)
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Computational Complexity of ASPL:

All pairs shortest path matrix based (parallelizable):

All pairs shortest path Dijkstra w. Fibonacci Heaps: O n2 logn + nm( )
Θ n3( )

x = Mq (S)

Computing the CPL
q#S elements are ≤ than x 
and (1-q)#S are > than x

x ∈Lqδ (S)
q#S(1-δ) elements are ≤ than x 
or (1-q)#S(1-δ) are > than x

s = 2
q2
ln 2


1−δ( )2
δ 2

Huber Method

Let R a random sample of S such that #R=s, then 
Mq(R) ∈ Lqδ(S) with probability p = 1-ε.

µ(a) = M 1
2
(a)

M 1
3
(a)

L 1
2 ,

1
5
(a)







s = 2
q2
ln 2


1−δ( )2
δ 2



HOW ABOUT THE 
MEMORY?

• Different representations

• Different trade-offs (space/time)

• How easy is metadata to manipulate

• Disk/RAM



POPULAR 
REPRESENTATIONS

• Adjacency List

• Incidence List

• Adjacency Matrix (using sparse matrices)

• Incidence Matrix (using sparse matrices)



class AdjacencyListGraph(object):
    def __init__(self):
        self.node = {}
        self.adj = {}

    def add_node(self, node, **attrs):
        if node not in self.adj:
            self.adj[node] = {}
            self.node[node] = attrs
        else: # update attr even if node already exists
            self.node[node].update(attrs)

    def add_edge(self, u, v, **attrs):
        if u not in self.adj:
            self.adj[u] = {}
            self.node[u] = {}
        if v not in self.adj:
            self.adj[v] = {}
            self.node[v] = {}

        datadict=self.adj[u].get(v,{})
        datadict.update(attrs)
        
        self.adj[u][v] = datadict
        self.adj[v][u] = datadict

v1
v2
v3

u

k2 ...k1

e2 ...e1

f2 ...f1

attribute
attribute

attribute
attribute

attribute
attribute

uself.node

self.adj



32 bit variant

Nodes Edges NX bytes Sparse bytes Dense bytes

100 733 198000 7734 10000

500 3922 1037976 41224 250000

1000 19518 4621688 199184 1000000

2000 96941 20927728 977414 4000000

5000 487686 108248888 4896864 25000000

10000 987274 221310552 9912744 100000000

20000 1986718 443525880 19947184 400000000



DISK BASED 
SOLUTIONS

• HDF5 (Pytables, h5py)

• Map-Reduce (Hadoop)

• Graph DBs (Riak, Neo4J, Allegro)

• “NoSQL graphs” (Mongo, ...)

• SQL DBs (PostgreSQL)



How about social networking applications?

profile

name, email, ...

connections

posts

post

post

post

post

When a user opens his page, his contacts profiles are read to get their posts.

A user that has many friends (high degree) has his profile read more often.

The degree distribution becomes the profile accesses distribution.

Very good for caching!

And what about the clustering coefficient?  Friends of friends tend to be friends...



� (G) =

X

v,u2V 2

(loc(v)� loc(u))AuvMinimize:

unfortunately NP complete “location of v profile”

We can however use community detection to improve locality.

We define a cluster to be a subgraph with some cohesion.

Different cluster definition exist, with different trade-offs.

But profiles in a cluster tend to be accessed together, so that
actually we can store the information “close” (disk-layout, sharding)

In general, for SNS knowing the network structure 
gives insight on how to optimize stuff.

We can also study the correlations between geography 
and clustering and hopefully use that info.



NETWORK 
PROCESSES

• Study of processes that occur on real networks

• “Network destruction”: models malfunctions in the network

• “Idea/Disease” diffusion over networks

• Link prediction



Network Destruction Process
def attack(graph, centrality_metric):
    graph = graph.copy()
    steps = 0
    ranks = centrality_metric(graph)
    nodes = sorted(graph.nodes(), key=lambda n: ranks[n])

    while nx.is_connected(graph):
        graph.remove_node(nodes.pop())
        steps += 1
    else:
        return steps

Power-Law Cluster Random

Random Attack 220 10

PageRank driven 19 149

Betweenness driven 22 157

Degree 19 265











Thanks for your kind attention.



• Random people from Omaha & Wichita were asked to send a postcard to a 
person in Boston:

• Write the name on the postcard

• Forward the message only to people personally known that was more likely 
to know the target

Nebraska

Kansas

Massachussets

Omaha

Wichita

Boston

6 Degrees

Milgram’s Experiment



• Random people from Omaha & Wichita were asked to send a postcard to a 
person in Boston:

• Write the name on the postcard

• Forward the message only to people personally known that was more likely 
to know the target

Nebraska

Kansas

Massachussets

Omaha

Wichita

Boston

6 Degrees

1st run: 64/296 arrived, most 
delivered to him by 2 men

2nd run: 24/160 arrived, 2/3
delivered by “Mr. Jacobs”

2 ≤ hops ≤ 10; µ=5.x

CPL, hubs, ...
... and Kleinberg’s Intuition

Milgram’s Experiment



[1]	

 Ahn, Y. Y., Han, S., Kwak, H., Moon, S., and Jeong, H. 2007. Analysis of topological characteristics of huge online social networking services
Proceedings of the 16th International Conference on World Wide Web. 835–844.
[2]	

 Adamic, L., Buyukkokten, O., and Adar, E. 2003. A social network caught in the web. First Monday. 8, 6, 29.
[3]	

 Barabási, A. L. and Albert, R. 1999. Emergence of Scaling in Random Networks. Science. 286, 509–512.
[4]	

 Bergenti, F., Franchi, E., and Poggi, A. 2011. Selected Models for Agent-based Simulation of Social Networks
Proceedings of the 3rd Symposium on Social Networks and Multiagent Systems (SNAMAS~’11). 27–32.
[5]	

 Dodds, P. S., Muhamad, R., and Watts, D. J. 2003. An experimental study of search in global social networks. Science. 301, 5634, 827–829.
[6]	

 Dunbar, R. I. M. 1992. Neocortex size as a constraint on group size in primates. Journal of Human Evolution. 22, 6, 469–493.
[7]	

 Erd\H{o}s, P. and Rényi, A. 1959. On random graphs. Publicationes Mathematicae. 6, 26, 290–297.
[8]	

 Gjoka, M., Kurant, M., Butts, C. T., and Markopoulou, A. 2010. Walking in Facebook: A Case Study of Unbiased Sampling of OSNs
Proceedings of IEEE INFOCOM ‘10.
[9]	

 Java, A., Song, X., and Finin, T. 2007. Why we twitter: understanding microblogging usage and communities
Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis. 1–10.
[10] Killworth, P. D. and Bernard, H. R. 1979. The Reversal Small-World Experiment. Social Networks. 1, 2, 159–192.
[11] Kleinberg, J. 2006. Complex networks and decentralized search algorithms
Proceedings of the International Congress of Mathematicians (ICM). 3, 1–26.
[12]	

 Kwak, H., Lee, C., Park, H., and Moon, S. 2010. What is Twitter, a Social Network or a News Media?
Proceedings of the 19th international conference on World wide web. 591–600.
[13] Milgram, S. 1967. The small world problem. Psychology Today. 1, 1, 61–67.
[14]	

 Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., and Bhattacharjee, B. 2007. Measurement and analysis of online social networks
Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. 29–42.
[15]	

 Nazir, A., Raza, S., and Chuah, C. N. 2008. Unveiling facebook: a measurement study of social network based applications
Proceedings of the 8th ACM SIGCOMM conference on Internet measurement. 43–56.
[16]	

 Newman, M. E. J. and Watts, D. J. 1999. Renormalization group analysis of the small-world network model. Physics Letters A. 263, 341–346.
[17]	

 Nguyen, V. and Martel, C. 2005. Analyzing and characterizing small-world graphs
Proceedings of the 16th annual ACM-SIAM Symposium on Discrete Algorithms. 311–320.
[18] Scellato, S., Mascolo, C., Musolesi, M., and Latora, V. 2010. Distance matters: Geo-social metrics for online social networks
Proceedings of the 3rd conference on Online social networks. 1–8.
[19] Watts, D. J. and Strogatz, S. 1998. Collective dynamics of small-world networks. Nature. 393, 6684, 440–442.

References


