
science + computing ag
IT-Services for Complex Computing Environments
Tübingen | München | Berlin | Düsseldorf

Building an Advanced Python Installation for Linux
and Windows

 Anselm Kruis | EuroPython 2012

 © 2012 science + computing ag

Page 2
Anselm Kruis | EuroPython 2012 | July 6th 2012

 Outline
▪ About me

▪ Outset

▪ Linux

▪ Problems

▪ Solutions

▪ Windows

▪ Problems

▪ Solutions

 © 2012 science + computing ag

Page 3
Anselm Kruis | EuroPython 2012 | July 6th 2012

 Who
Name: Anselm Kruis
Profession: Senior Architect at science + computing ag
Location: Munich

Why
▪ Python is fun, EuroPython is fun
▪ Let's do some cool stuff
▪ Cool stuff, that isn't used, doesn't matter
▪ Make your programs usable!

 © 2012 science + computing ag

Page 4
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Spring 2010: start of a new project
▪ Stackless Python 2.x, PyGTK, lxml, ...

▪ Computers

▪ Office PCs

▪ Large HPC cluster (>10000 cores)

▪ Operating systems:

▪ Linux x86_64, various distributions. Oldest RHEL4

▪ Windows 32 and 64bit, starting with XP SP3

▪ Code server based installation

 © 2012 science + computing ag

Page 5
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Only two architecture dependent packets: Linux, Windows

▪ Zero installation

▪ Fully relocatable

▪ Usable and maintainable for more than 10 years

▪ Reliable

▪ Wrap scripts with executables
fg2start instead of python fg2start.py

 © 2012 science + computing ag

Page 6
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Architecture packets for
▪ Windows 32bit starting with XP SP3
▪ Linux x86_64 distributions with glibc 2.3.4 or later

(RHEL 4 and up, SLES 10 and up, Debian).
▪ Zero installation

▪ No dependency on any component, that is not distributed with the operating system
▪ Relocatable

▪ Runs from any directory in the file system tree.
▪ Usable and maintainable for more than 10 years.

▪ Compile everything ourself
▪ Ability to fix bugs: know-how, license issues, cost

▪ Reliability
▪ Don't use undocumented features.
▪ Adhere to standards (i.e. Python, Posix, Microsoft) wherever possible

▪ No scripts
▪ Wrap every script with a real executable.

 © 2012 science + computing ag

Page 7
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Existing tools and projects didn't fit
▪ I didn't know about PyRun in 2010

▪ Our solution
▪ Targeted to our needs
▪ Well understood
▪ Maintainable
▪ A lot of work

 © 2012 science + computing ag

Page 8
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Layout

▪ One pure Python packet
▪ Py-files, data-files, configuration, documentation, ...
▪ Always installed

▪ Two architecture dependent packets
▪ Provide:

▪ Python + compiled extensions
▪ Wrapper for Python scripts

▪ Installed as needed
▪ Reusable for other projects

 © 2012 science + computing ag

Page 9
Anselm Kruis | EuroPython 2012 | July 6th 2012

Linux

Windows

 $FG2_HOME/
doc/
share/
… here are the *.py files
arch/

rhel4u4-x86_64/
bin/

_fg2python
fg2start

libexec/
python
fg2start.pyc

win32/
bin/

_fg2python.exe
fg2start.exe

libexec/
python.exe
fg2start.pyc

Wrapper

real Python executable

 © 2012 science + computing ag

Page 10
Anselm Kruis | EuroPython 2012 | July 6th 2012

 Typical software installation:

$ configure --prefix=/... && make && sudo make install

 Resulting installation does not match our requirements

▪ The installation heavily depends on the installed libraries / development
packages.
▪ configure auto detection of libraries
▪ library symbol versioning

▪ --prefix path in
▪ ELF-attribute DT_RUNPATH, aka “rpath”
▪ compiled into binaries via cpp defines
▪ generated configuration files

 © 2012 science + computing ag

Page 11
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Reproducible, well defined build process

▪ Relocatable installation = can be installed anywhere

▪ Script wrapper

 © 2012 science + computing ag

Page 12
Anselm Kruis | EuroPython 2012 | July 6th 2012

 Use a chroot build environment !
▪ Keep your development system current and secure
▪ Most Linux distributions provide a suitable chroot build environments

▪ Fedora: mock
▪ SuSE: build
▪ Debian: pbuilder

▪ For precise control and customization
▪ Use a local package repository

▪ Speed up
▪ Ability to add / remove / modify packages

▪ Search Google for “chroot build environment”

 © 2012 science + computing ag

Page 13
Anselm Kruis | EuroPython 2012 | July 6th 2012

 File access happens

▪ During startup of an executable
▪ Runtime linker ld.so locates shared libraries

▪ At runtime
▪ The application uses files

 © 2012 science + computing ag

Page 14
Anselm Kruis | EuroPython 2012 | July 6th 2012

 Startup: Runtime linker ld.so locates
▪ Shared system libraries: /etc/ld.so.conf
▪ Private shared libraries

▪ Environment variable LD_LIBRARY_PATH

▪ rpath

 © 2012 science + computing ag

Page 15
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Executables or shared libraries can contain a search path for shared
libraries they depend on

▪ A feature of the ELF file format and the runtime linker

▪ Usually set at link time. ld option -rpath

▪ Utility patchelf can set it

▪ Within RPATH entries “$ORIGIN” means the directory containing the
executable or shared library

▪ $ORIGIN not supported by autoconf / automake / libtool

▪ Hacking the build system is no fun → $ORIGIN is rarely used

▪ To set RPATH entries for a complete application use the script
set_relative_rpath.py

 © 2012 science + computing ag

Page 16
Anselm Kruis | EuroPython 2012 | July 6th 2012

...

lib

usr

preliminaryDir

lib

/

libc.so.6
….

lib*
….

Various
executables
and shared
libraries

▪ Get it from https://github.com/akruis/advancedPythonInstallation

▪ Create a file with all system lib dirs
ldconfig -N -v | sed -n -e 's,^\(/[^:]*\).*,\1,p' \

>systemlibdirs
▪ Compile and install your software (i.e. python) as usual

configure –prefix /.../preliminaryDir && make install
▪ Set LD_LIBRARY_PATH as needed to locate private libraries

export LD_LIBRARY_PATH=/.../preliminaryDir/lib:....
▪ Set required RPATH entries within “preliminaryDir” subtree

python -u set_relative_rpath \
-c systemlibdirs \
-n -w '/.../preliminaryDir'

https://github.com/akruis/advancedPythonInstallation

 © 2012 science + computing ag

Page 17
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Startup: Runtime linker ld.so locates shared libraries
…

▪ Runtime: The application locates files
▪ How to make it relocatable ?

▪ Environment Variables
▪ Config Files
▪ Patches

▪ For Python extension modules
Use sitecustomize.py to set environment variables
▪ use os.putenv to preserve os.environ unmodified
▪ monkey patch subprocess to use os.environ by default

 © 2012 science + computing ag

Page 18
Anselm Kruis | EuroPython 2012 | July 6th 2012

 Sometimes you need a patch to make a program relocatable
▪ Push it upstream
▪ Follow established standards

▪ XDG Base Directory Specification
▪ GTK Environment http://developer.gnome.org/gtk/stable/gtk-running.html

▪ Our Patches for PyGTK
▪ Pango: https://bugzilla.gnome.org/show_bug.cgi?id=454017

(Committed since 2012-03-17)
▪ GVFS: https://bugzilla.gnome.org/show_bug.cgi?id=678697
▪ GDK-Pixbuf: https://bugzilla.gnome.org/show_bug.cgi?id=678703
▪ Glade: https://bugzilla.gnome.org/show_bug.cgi?id=678707

https://bugzilla.gnome.org/show_bug.cgi?id=454017
https://bugzilla.gnome.org/show_bug.cgi?id=678703

 © 2012 science + computing ag

Page 19
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Wrapper is written in C
This way it can be used as a script interpreter

▪ Takes its own name as the name of a python script to execute
▪ Mostly equivalent to the following shell code

#!/bin/sh
exec `dirname $0`/../libexec/python \
 $OPTIONS_FOR_PYTHON \
 `dirname $0`/../libexec/`basename $0`.pyc –- "$@"

 © 2012 science + computing ag

Page 20
Anselm Kruis | EuroPython 2012 | July 6th 2012

 Any Questions ?

 Let's proceed to
 Windows 32bit

 © 2012 science + computing ag

Page 21
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Building the software is much harder

▪ Relocation is usually no big problem

▪ The DLL hell is awaiting you

▪ Sometimes things working on Linux don't work on Windows

▪ Example: wrappers

 © 2012 science + computing ag

Page 22
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Reproducible, well defined build process

▪ Relocatable Installation = can be installed anywhere

▪ Script wrapper

 © 2012 science + computing ag

Page 23
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Tool chain issues
▪ Compiler
▪ C-runtime library

▪ DLLs
▪ Where to install private DLLs ?

 © 2012 science + computing ag

Page 24
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Python 2.7 uses Visual Studio 2008 by default
▪ C-runtime: usually msvcr90.dll

▪ Many libraries require MinGW / MSYS
▪ UNIX style build environment
▪ C-runtime: usually msvcrt.dll

▪ Mixing compilers is not without problems
▪ Compiler specific C-runtime library
▪ Compiler specific debug information

→ Problems are waiting

 © 2012 science + computing ag

Page 25
Anselm Kruis | EuroPython 2012 | July 6th 2012

 Selection of the C-runtime

▪ Do not care: mix msvcrt.dll and msvcr90.dll

▪ Only msvcrt.dll

▪ Only msvcr90.dll

 © 2012 science + computing ag

Page 26
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Do not care, mix both DLLs
▪ Building the software is fairly simple
▪ The official binaries at ftp.gnome.org do it
▪ It is discouraged by Microsoft

http://msdn.microsoft.com/en-us/library/ms235460%28v=vs.90%29

▪ You application may break if you change the compiler for a single library
▪ Debugging is hard: No debugger supports both formats

▪ Only msvcrt.dll
▪ Trivial with MinGW or Visual Studio 6
▪ Visual Studio 2008 + WDK

▪ Fairly simple, see
http://developer.berlios.de/devlog/akruis/2012/06/03/msvcrtdll-and-visual-studio/

▪ No precompiled extension modules
▪ Debugging is difficult
▪ Y2038 issues

ftp://ftp.gnome.org/
http://msdn.microsoft.com/en-us/library/ms235460%28v=vs.90%29
http://developer.berlios.de/devlog/akruis/2012/06/03/msvcrtdll-and-visual-studio/

 © 2012 science + computing ag

Page 27
Anselm Kruis | EuroPython 2012 | July 6th 2012

 Only msvcr90.dll
▪ Trivial with Visual Studio 2008
▪ MinGW

▪ Tedious setup of build environment
http://developer.berlios.de/devlog/akruis/2012/06/10/msvcr90dll-and-mingw/

▪ Changes in short
▪ GCC spec-file hacks

▪ Link msvcr90.dll
▪ Add: manifest
▪ Add: empty invalid parameter handler

▪ Rebuild MinGW-runtime to use msvcr90.dll
▪ MSYS is slow
▪ Cross compiling on Fedora 16 is fast and works fine

▪ Many MinGW packages: GTK, libxml, libxslt, ...

http://developer.berlios.de/devlog/akruis/2012/06/10/msvcr90dll-and-mingw/

 © 2012 science + computing ag

Page 28
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Windows looks for DLLs in the directories named by PATH
▪ If you add a directory containing DLLs to PATH

▪ A different application could load your DLLs
▪ If you locate DLLs via PATH

▪ You could get foreign DLLs
→ Do not place a DLL besides an executable, if the executable is going to

be located via PATH

▪ But where to place private DLLs ?
▪ Use a manifest and place the DLL in a subdirectory
▪ Use a wrapper for the executable
▪ Runtime DLL loading only: SetDllDirectory

import ctypes
ctypes.windll.kernel32.SetDllDirectoryW(unicode(dir))

 © 2012 science + computing ag

Page 29
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ Application Manifest (within *.exe)

<assembly xmlns='urn:schemas-microsoft-com:asm.v1' manifestVersion='1.0'>
 <dependency>
 <dependentAssembly>
 <assemblyIdentity type='win32' name='myorg.python.dlls' version='2.7.3.0'/>
 </dependentAssembly>
 </dependency>
</assembly>

You can use mt.exe from SDK to change the embedded manifest of an application

▪ Assembly
▪ Directory layout

\python.exe
\myorg.python.dlls\myorg.python.dlls.MANIFEST
\myorg.python.dlls\python27.dll

▪ myorg.python.dlls.MANIFEST
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
 <assemblyIdentity type="win32" name="myorg.python.dlls" version="2.7.3.0"/>
 <file name="python27.dll" />
</assembly>

 © 2012 science + computing ag

Page 30
Anselm Kruis | EuroPython 2012 | July 6th 2012

 User Account Control
▪ http://msdn.microsoft.com/en-us/library/windows/desktop/bb756929.aspx
▪ To avoid the UAC prompt add

<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
 <security>
 <requestedPrivileges>
 <requestedExecutionLevel level="asInvoker" uiAccess="false"/>
 </requestedPrivileges>
 </security>
</trustInfo>

http://msdn.microsoft.com/en-us/library/windows/desktop/bb756929.aspx

 © 2012 science + computing ag

Page 31
Anselm Kruis | EuroPython 2012 | July 6th 2012

 See Linux

 © 2012 science + computing ag

Page 32
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ UNIX: wrapper uses execve.
▪ Only 1 process, a single PID, good

▪ Windows lacks the system call execve
▪ Wrapper spawns python and waits for the results.
▪ Kill-problem: Python needs to monitor the wrapper

▪ Wrapper adds an inheritable handle to itself to the environment
▪ Python creates a non inheritable handle, then waits for the handle to get signaled and

terminate itself using a daemon thread.

▪ Example
▪ See https://github.com/akruis/advancedPythonInstallation

directory “winWrapper”

https://github.com/akruis/advancedPythonInstallation

 © 2012 science + computing ag

Page 33
Anselm Kruis | EuroPython 2012 | July 6th 2012

▪ We got a complaint: “it takes 2 minutes to start the GUI”

▪ A trace showed: stat() calls for non existing files on a CIFS file-
server are fairly slow

▪ “import” does an awful lot of stats: 4 for each directory

▪ PyPi package http://pypi.python.org/pypi/quickimport

▪ Caches directory content and avoids many stat() calls

▪ Does not require changes to the application

▪ We got a factor 2 speed up

http://pypi.python.org/pypi/quickimport

 © 2012 science + computing ag

Page 34
Anselm Kruis | EuroPython 2012 | July 6th 2012

 Building an Advanced Python Installation
▪ is possible
▪ is takes a lot of time
▪ is required for certain Python based products

 Open Questions
▪ How to provide it to the public?
▪ Is there demand for more work in this area?

 © 2012 science + computing ag

Page 35
Anselm Kruis | EuroPython 2012 | July 6th 2012

 Thanks to
▪ Arno Steitz

for approving the publication of code and know how
▪ Michael Bauer

for writing set_relative_rpath.py

 © 2012 science + computing ag

Page 36
Anselm Kruis | EuroPython 2012 | July 6th 2012

 Build Tools
▪ https://github.com/akruis/advancedPythonInstallation
 Windows C-Runtime Hacks
▪ http://developer.berlios.de/devlog/akruis/2012/06/03/msvcrtdll-and-visual-studio/
▪ http://developer.berlios.de/devlog/akruis/2012/06/10/msvcr90dll-and-mingw/
▪ http://kobyk.wordpress.com/2007/07/20/dynamically-linking-with-msvcrtdll-using-visual-c-2005/
 Standards
▪ XDG Base Directory Specification

http://freedesktop.org/wiki/Standards/basedir-spec?action=show
▪ Windows Manifest

http://msdn.microsoft.com/en-us/library/windows/desktop/aa375632%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa375674%28v=vs.85%29.aspx

 Other
▪ PyRun – a single file Python installation

http://www.egenix.com/products/python/PyRun/

▪

https://github.com/akruis/advancedPythonInstallation
http://developer.berlios.de/devlog/akruis/2012/06/03/msvcrtdll-and-visual-studio/
http://developer.berlios.de/devlog/akruis/2012/06/10/msvcr90dll-and-mingw/
http://kobyk.wordpress.com/2007/07/20/dynamically-linking-with-msvcrtdll-using-visual-c-2005/
http://freedesktop.org/wiki/Standards/basedir-spec?action=show
http://msdn.microsoft.com/en-us/library/windows/desktop/aa375632%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa375674%28v=vs.85%29.aspx

Many thanks for your kind attention.

 Anselm Kruis
 science + computing ag
 www.science-computing.de

 Phone +49-7071-9457-0
 info@science-computing.de

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Schlussfolie

