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 Who
Name: Anselm Kruis
Profession: Senior Architect at science + computing ag
Location: Munich

Why
▪ Python is fun, EuroPython is fun 
▪ Let's do some cool stuff
▪ Cool stuff, that isn't used, doesn't matter
▪ Make your programs usable!
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▪ Spring 2010: start of a new project
▪ Stackless Python 2.x, PyGTK, lxml, ...

▪ Computers

▪ Office PCs

▪ Large HPC cluster (>10000 cores)

▪ Operating systems: 

▪ Linux x86_64, various distributions. Oldest RHEL4 

▪ Windows 32 and 64bit, starting with XP SP3

▪ Code server based installation
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▪ Only two architecture dependent packets: Linux, Windows

▪ Zero installation

▪ Fully relocatable

▪ Usable and maintainable for more than 10 years

▪ Reliable

▪ Wrap scripts with executables
fg2start instead of  python fg2start.py
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▪ Architecture packets for 
▪ Windows 32bit starting with XP SP3 
▪ Linux x86_64 distributions with glibc 2.3.4 or later 

(RHEL 4 and up, SLES 10 and up, Debian).
▪ Zero installation

▪ No dependency on any component, that is not distributed with the operating system
▪ Relocatable

▪ Runs from any directory in the file system tree.
▪ Usable and maintainable for more than 10 years.

▪ Compile everything ourself
▪ Ability to fix bugs: know-how, license issues, cost

▪ Reliability
▪ Don't use undocumented features. 
▪ Adhere to standards (i.e. Python, Posix, Microsoft) wherever possible

▪ No scripts
▪ Wrap every script with a real executable.



 © 2012 science + computing ag

Page 7   
Anselm Kruis  |  EuroPython 2012  |  July 6th 2012

▪ Existing tools and projects didn't fit
▪ I didn't know about PyRun in 2010

▪ Our solution
▪ Targeted to our needs
▪ Well understood
▪ Maintainable
▪ A lot of work
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▪ Layout

▪ One pure Python packet
▪ Py-files, data-files, configuration, documentation, ... 
▪ Always installed

▪ Two architecture dependent packets
▪ Provide:

▪ Python + compiled extensions
▪ Wrapper for Python scripts

▪ Installed as needed
▪ Reusable for other projects 
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Linux

Windows

 $FG2_HOME/
doc/
share/
… here are the *.py files
arch/

rhel4u4-x86_64/
bin/

_fg2python
fg2start

libexec/
python
fg2start.pyc

win32/
bin/

_fg2python.exe
fg2start.exe

libexec/
python.exe
fg2start.pyc

Wrapper

real Python executable
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 Typical software installation:

$ configure --prefix=/... && make && sudo make install 

 Resulting installation does not match our requirements
 

▪ The installation heavily depends on the installed libraries / development 
packages.
▪ configure auto detection of libraries
▪ library symbol versioning

▪ --prefix path in
▪ ELF-attribute DT_RUNPATH, aka “rpath”
▪ compiled into binaries via cpp defines
▪ generated configuration files
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▪ Reproducible, well defined build process

▪ Relocatable installation = can be installed anywhere

▪ Script wrapper
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 Use a chroot build environment !
▪ Keep your development system current and secure
▪ Most Linux distributions provide a suitable chroot build environments

▪ Fedora: mock
▪ SuSE: build
▪ Debian: pbuilder

▪ For precise control and customization
▪ Use a local package repository

▪ Speed up
▪ Ability to add / remove / modify packages

▪ Search Google for “chroot build environment” 
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 File access happens
 

▪ During startup of an executable 
▪ Runtime linker ld.so locates shared libraries

▪ At runtime 
▪ The application uses files
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 Startup: Runtime linker ld.so locates
▪ Shared system libraries: /etc/ld.so.conf 
▪ Private shared libraries

▪ Environment variable LD_LIBRARY_PATH

▪ rpath
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▪ Executables or shared libraries can contain a search path for shared 
libraries they depend on

▪ A feature of the ELF file format and the runtime linker

▪ Usually set at link time. ld option -rpath

▪ Utility patchelf can set it

▪ Within RPATH entries “$ORIGIN” means the directory containing the 
executable or shared library

▪ $ORIGIN not supported by autoconf / automake / libtool

▪ Hacking the build system is no fun → $ORIGIN is rarely used

▪ To set RPATH entries for a complete application use the script 
set_relative_rpath.py



 © 2012 science + computing ag

Page 16   
Anselm Kruis  |  EuroPython 2012  |  July 6th 2012

...

lib

usr

preliminaryDir

lib

/

libc.so.6
….

lib*
….

Various
executables
and shared 
libraries

▪ Get it from https://github.com/akruis/advancedPythonInstallation

▪ Create a file with all system lib dirs
ldconfig -N -v | sed -n -e 's,^\(/[^:]*\).*,\1,p' \

>systemlibdirs
▪ Compile and install your software (i.e. python) as usual

configure –prefix /.../preliminaryDir && make install
▪ Set LD_LIBRARY_PATH as needed to locate private libraries

export LD_LIBRARY_PATH=/.../preliminaryDir/lib:....
▪ Set required RPATH entries within “preliminaryDir” subtree

python -u set_relative_rpath \
-c systemlibdirs \
-n -w '/.../preliminaryDir'

https://github.com/akruis/advancedPythonInstallation
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▪ Startup: Runtime linker ld.so locates shared libraries
… 

▪ Runtime: The application locates files
▪ How to make it relocatable ?

▪ Environment Variables
▪ Config Files
▪ Patches

▪ For Python extension modules
Use sitecustomize.py to set environment variables
▪ use os.putenv to preserve os.environ unmodified
▪ monkey patch subprocess to use os.environ by default



 © 2012 science + computing ag

Page 18   
Anselm Kruis  |  EuroPython 2012  |  July 6th 2012

 Sometimes you need a patch to make a program relocatable
▪ Push it upstream
▪ Follow established standards

▪ XDG Base Directory Specification
▪ GTK Environment http://developer.gnome.org/gtk/stable/gtk-running.html

▪ Our Patches for PyGTK
▪ Pango: https://bugzilla.gnome.org/show_bug.cgi?id=454017

(Committed since 2012-03-17)
▪ GVFS: https://bugzilla.gnome.org/show_bug.cgi?id=678697
▪ GDK-Pixbuf: https://bugzilla.gnome.org/show_bug.cgi?id=678703
▪ Glade: https://bugzilla.gnome.org/show_bug.cgi?id=678707

https://bugzilla.gnome.org/show_bug.cgi?id=454017
https://bugzilla.gnome.org/show_bug.cgi?id=678703
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▪ Wrapper is written in C
This way it can be used as a script interpreter

▪ Takes its own name as the name of a python script to execute
▪ Mostly equivalent to the following shell code
  
#!/bin/sh
exec `dirname $0`/../libexec/python \
 $OPTIONS_FOR_PYTHON \
 `dirname $0`/../libexec/`basename $0`.pyc –- "$@"
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 Any Questions ?
 

 

 Let's proceed to
 Windows 32bit
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▪ Building the software is much harder

▪ Relocation is usually no big problem

▪ The DLL hell is awaiting you

▪ Sometimes things working on Linux don't work on Windows

▪ Example: wrappers 
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▪ Reproducible, well defined build process

▪ Relocatable Installation = can be installed anywhere

▪ Script wrapper
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▪ Tool chain issues
▪ Compiler
▪ C-runtime library

▪ DLLs
▪ Where to install private DLLs ? 
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▪ Python 2.7 uses Visual Studio 2008 by default
▪ C-runtime: usually msvcr90.dll

▪ Many libraries require MinGW / MSYS
▪ UNIX style build environment
▪ C-runtime: usually msvcrt.dll

▪ Mixing compilers is not without problems
▪ Compiler specific C-runtime library
▪ Compiler specific debug information

→ Problems are waiting
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 Selection of the C-runtime

▪ Do not care: mix msvcrt.dll and msvcr90.dll

▪ Only msvcrt.dll

▪ Only msvcr90.dll
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▪ Do not care, mix both DLLs
▪ Building the software is fairly simple
▪ The official binaries at ftp.gnome.org do it
▪ It is discouraged by Microsoft 

http://msdn.microsoft.com/en-us/library/ms235460%28v=vs.90%29

▪ You application may break if you change the compiler for a single library
▪ Debugging is hard: No debugger supports both formats

▪ Only msvcrt.dll
▪ Trivial with MinGW or Visual Studio 6
▪ Visual Studio 2008 + WDK

▪ Fairly simple, see  
http://developer.berlios.de/devlog/akruis/2012/06/03/msvcrtdll-and-visual-studio/

▪ No precompiled extension modules
▪ Debugging is difficult
▪ Y2038 issues 

ftp://ftp.gnome.org/
http://msdn.microsoft.com/en-us/library/ms235460%28v=vs.90%29
http://developer.berlios.de/devlog/akruis/2012/06/03/msvcrtdll-and-visual-studio/
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 Only msvcr90.dll
▪ Trivial with Visual Studio 2008
▪ MinGW

▪ Tedious setup of build environment
http://developer.berlios.de/devlog/akruis/2012/06/10/msvcr90dll-and-mingw/

▪ Changes in short
▪ GCC spec-file hacks

▪ Link msvcr90.dll
▪ Add: manifest
▪ Add: empty invalid parameter handler

▪ Rebuild MinGW-runtime to use msvcr90.dll
▪ MSYS is slow
▪ Cross compiling on Fedora 16 is fast and works fine

▪ Many MinGW packages: GTK, libxml, libxslt, ...

http://developer.berlios.de/devlog/akruis/2012/06/10/msvcr90dll-and-mingw/
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▪ Windows looks for DLLs in the directories named by PATH
▪ If you add a directory containing DLLs to PATH

▪ A different application could load your DLLs
▪ If you locate DLLs via PATH

▪ You could get foreign DLLs
→ Do not place a DLL besides an executable, if the executable is going to 

be located via PATH

▪ But where to place private DLLs ?
▪ Use a manifest and place the DLL in a subdirectory
▪ Use a wrapper for the executable
▪ Runtime DLL loading only: SetDllDirectory

import ctypes
ctypes.windll.kernel32.SetDllDirectoryW(unicode(dir))
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▪ Application Manifest (within *.exe)

<assembly xmlns='urn:schemas-microsoft-com:asm.v1' manifestVersion='1.0'>
  <dependency>
    <dependentAssembly>
      <assemblyIdentity type='win32' name='myorg.python.dlls' version='2.7.3.0'/>
    </dependentAssembly>
  </dependency>
</assembly>

You can use mt.exe from SDK to change the embedded manifest of an application

▪ Assembly
▪ Directory layout

\python.exe
\myorg.python.dlls\myorg.python.dlls.MANIFEST
\myorg.python.dlls\python27.dll

▪ myorg.python.dlls.MANIFEST
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
    <assemblyIdentity type="win32" name="myorg.python.dlls" version="2.7.3.0"/>
    <file name="python27.dll" />
</assembly>
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 User Account Control
▪ http://msdn.microsoft.com/en-us/library/windows/desktop/bb756929.aspx
▪ To avoid the UAC prompt add

<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
  <security>
    <requestedPrivileges>
      <requestedExecutionLevel level="asInvoker" uiAccess="false"/>
    </requestedPrivileges>
  </security>
</trustInfo>

http://msdn.microsoft.com/en-us/library/windows/desktop/bb756929.aspx
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 See Linux



 © 2012 science + computing ag

Page 32   
Anselm Kruis  |  EuroPython 2012  |  July 6th 2012

▪ UNIX: wrapper uses execve. 
▪ Only 1 process, a single PID, good

▪ Windows lacks the system call execve
▪ Wrapper spawns python and waits for the results.
▪ Kill-problem: Python needs to monitor the wrapper

▪ Wrapper adds an inheritable handle to itself to the environment
▪ Python creates a non inheritable handle, then waits for the handle to get signaled and 

terminate itself using a daemon thread.

▪ Example
▪ See https://github.com/akruis/advancedPythonInstallation 

directory “winWrapper”

https://github.com/akruis/advancedPythonInstallation
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▪ We got a complaint: “it takes 2 minutes to start the GUI”

▪ A trace showed: stat() calls for non existing files on a CIFS file-
server are fairly slow

▪ “import” does an awful lot of stats: 4 for each directory

▪ PyPi package http://pypi.python.org/pypi/quickimport

▪ Caches directory content and avoids many stat() calls

▪ Does not require changes to the application

▪ We got a factor 2 speed up

http://pypi.python.org/pypi/quickimport
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 Building an Advanced Python Installation
▪ is possible
▪ is takes a lot of time
▪ is required for certain Python based products

 Open Questions
▪ How to provide it to the public?
▪ Is there demand for more work in this area?
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 Thanks to
▪ Arno Steitz 

for approving the publication of code and know how
▪ Michael Bauer 

for writing set_relative_rpath.py



 © 2012 science + computing ag

Page 36   
Anselm Kruis  |  EuroPython 2012  |  July 6th 2012

 Build Tools
▪ https://github.com/akruis/advancedPythonInstallation
 Windows C-Runtime Hacks
▪ http://developer.berlios.de/devlog/akruis/2012/06/03/msvcrtdll-and-visual-studio/
▪ http://developer.berlios.de/devlog/akruis/2012/06/10/msvcr90dll-and-mingw/
▪ http://kobyk.wordpress.com/2007/07/20/dynamically-linking-with-msvcrtdll-using-visual-c-2005/
 Standards
▪ XDG Base Directory Specification

http://freedesktop.org/wiki/Standards/basedir-spec?action=show
▪ Windows Manifest

http://msdn.microsoft.com/en-us/library/windows/desktop/aa375632%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa375674%28v=vs.85%29.aspx

 Other
▪ PyRun – a single file Python installation

http://www.egenix.com/products/python/PyRun/

▪

https://github.com/akruis/advancedPythonInstallation
http://developer.berlios.de/devlog/akruis/2012/06/03/msvcrtdll-and-visual-studio/
http://developer.berlios.de/devlog/akruis/2012/06/10/msvcr90dll-and-mingw/
http://kobyk.wordpress.com/2007/07/20/dynamically-linking-with-msvcrtdll-using-visual-c-2005/
http://freedesktop.org/wiki/Standards/basedir-spec?action=show
http://msdn.microsoft.com/en-us/library/windows/desktop/aa375632%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa375674%28v=vs.85%29.aspx


Many thanks for your kind attention.

 

 Anselm Kruis
 science + computing ag
 www.science-computing.de
 

 Phone +49-7071-9457-0
 info@science-computing.de
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