Building a Hosting Platorm with Python

Andrew Godwin
@andrewgodwin

Hi, I'm Andrew.

- Serial Python developer
- Django core committer
- Go-founder of ep.io

We're ep.io

- Python Platform-as-a-Service
- Easy deployment, easy upgrades
- PostgreSaL, Redis, Celery, and more

Why am | here?

- Architecture Overview
- What we use, and how
- What did we learn?

Architectural Overview

In short: Ever so slightly ma.

Hardware

- Real colo’d machines (pretty reliable)
- Linode (pretty reliahle)
- EC2 (pretty unreliable)

- [Pv6 (as much as we can)

Network

- Internal networks are easy
- Gross-Atlantic [atency is less fun
- Variety of different restrictions

Daemons by the Dozen

- We have lots of small components
- 11, as of June 2011

- They all need to communicate

Redundancy, Redundancy, ...

- |t's very important that no site dies.
- Everything can he run as a pair

- HA and backups both needed

- Gannot rely on a centralised state

Security

- User data Is paramount

- Quite a bit of our code runs as root
- Permissions, chroot, other isolation
- VM per site is too much overhead

Variety

- Python sites are pretty varied
- We need other languages to work too

- Some things (PostgreSaL vs MySaL)
we have to be less flexible on

What do we use?
Lots of exciting things, that's what.

Basic Technologies

- Eventlet, ZeroMQ, PostgreSOL
- Historically, Redis
- Ubuntu/Debian packages & tools

Moving Data

- Message-passing (ZeroMQ, was Redis)
- Stored state (PostgreSQL, plain text)

Storage

- We're testing btrfs and GlusterF$
- One type needed for app disk images

- One type needed for app data store
(mounted on every app instance)

Eventlet

A shiny, coroutine-filled future

What Is eventlet?

- Greenlet-based async/'threading’
» Multiple hubs (including libevent)

- Threads yield cooperatively on any
async operations

Brief Example

eventlet.green urllib

results = {}
fetch(key, url):

results[key] = urllib.urlopen(url).read()

i range(10):
eventlet.spawn(fetch, i, "http://ep.1i0/%s" % 1i)

len(results) < 10:
eventlet.sleep(1)

Standard Classes

- Eventlet-hased daemons

- Multiple main loops, terminates if any die
- Gatches any exceptions

- Logs to stderr and remote syslog

Daemon Example

BaseDaemon, resilient loop

Locker (BaseDaemon) :
main_loops = ["heartbeat loop", "lock loop"]

pre_run():
.locks = {}

@resilient_loop(1)
heartbeat loop():
self.send heartbheat (

.lock port,
"locker-lock",

Greening The World

- You must use greenlet-friendly libraries

- Others will work, but just block

- Eventlet supports most of stdlib

- Gan monkeypatch to support other modules

We're Not In Kansas Anymore

- You can still have race conditions
- Ungreened modules block everything

- Some combiantions have odd hugs
(unpatched Django & psycopg?2)

Still, it's really useful

- We've had upwards of 10,000 threads
- multiprocessing falls over at that level

- gventlet is easier to use than threading
(much less chance of race conditions)

Redis

Small but perfectly formed.

The Beginning

- Everything in Redis

- No, really - app disk images too

- Disk images quickly moved to, uh, disk

February - March

- Doing lots of filtering 'queries’
- Moved user info, permissions to Postgres
- App info, messaging still there

Recently

- App info moved to Postgres
- Messaging moved to ZeroMQ
- Not used by backend any more

Why?
- |t's a great database/store, hut not for us

- We may revisit once we get PGSOL issues
- Looking forward to Redis Cluster

BMQ

A moose taught me the symbol.

What is ZeroMQ?

- [t's NOT a message queue
- Basically high-level sockets

- Gomes in many delicious flavours:
PUB/SUB REQ/REP PUSH/PULL
XREQ/XREP PAIR

ZeroMQ Example

eventlet.green

ctx = zmg.Context()
sock = ctx.sock(zmqg.REQ)

sock.connect("tcp://1.2.3.4:567"
sock.connect("tcp://1.1.1.1:643"

sock.send("Hello, world!'")
sock.recv()

How do we use 1t?

- Mostly REQ/XREP
- Gustom @zmq__loop decorator
- JSON + security measures

zmq loop example

BaseDaemon, zmq_Tloop
SomeDaemon (BaseDaemon) :

main_loops = ["query loop", "stats loop"]
port = 1234

@zmq_Lloop(zmq.XREP, "port")
query loop(data):
{"error": "Only a slide demo!"}

@zmq_loop(zmq.PULL, "stats port")
stats_loop(data):

data

Other Nice ZeroMQ things

- Eventlet supports it, quite well
- Gan use TCP, PGM, or in-process comms
- Gan he faster than raw messages on TCP
- Doesn't care if your network isn't up yet

PIYS

Or, How | Learned To Stop
Worrying And Love Unix

What is a PTY?

- |t's a process-controllable terminal
- Used for SSH, etc.
- We needed them for interactivity

Attempt One

- Just run processes in subprocess
- Great, until you want to be interactive
- Some programs insist on a terminal

Attempt Two

- Python has a pty module!
- Take the raw 0S filehandles
- Try to make it greenlet-compatible

- Works! Most of the time...

Greened pty example

run ():
gc.disable()
:pid, fd = pty.fork()
gcfenable()

pid == 0:
.run_child()

gc.enable()

Greened pty example

fentl. fentl(.fd, fcntl.F_SETFL, os.0 NONBLOCK)
in_thread = eventlet.spawn(.in_thread)
out_thread = eventlet.spawn(.out_thread)

out_thread.wait()
out_thread.kill()

rpid = 0
rpid == 0:
rpid, status = os.waitpid/(.pid, 0)
eventlet.sleep(0.01)
in_thread.wait()
in_thread.kill()
os.close(.fd)

Attempt Three

- Use subprocess, hut with a wrapper
- Wrapper exposes pty over stdin/stdout
- Significantly more reliable

Lesser-Known Modules

They just want to be your friend.

The resource module

- Lets you set file handle, nproc, etc. limits
- Lets you discover limits, too

The signal module

- Want to catch Ctrl-C in a sane way?
- We use it to quit cleanly on SIGTERM

- Gan set handlers for most signals

The atexit module

- Not terribly useful most of the time
- Used in our command-line admin client

The shlex module

- Implements a shell-like lexer

- shlex.split('command string') gives
you arguments for 0s.exec

The fentl module

- The portal to a dark world of Unix
- We use it for fiddling hlocking modes

- Also contains leases, signals, dnotify,
creation flags, and pipe fiddling

Closing Remarks
Because stopping abruptly is had.

Adopting fresh technologies
can he a pain.

- Eventlet, ZeroMQ, new Redis are all young

- 0§ packaging and hugs not always
fully worked out.

Don't reinvent the wheel, or
optimize prematurely.

- 0ld advice, but still good.

- You really don’t want to solve things
the kernel solves already.

Reinvent the wheel,
occasionally

- Don't necessarily use it

- Helps you to understand the problem
- Sometimes it's better (e.g. our halancer)

Python Is really very capable

- |t's easy to develop and maintain

- |t's not too slow for most jobs
- There's always PyPy...

Questions?

Andrew Godwin
andrew(@ep.io
@andrewgodwin

