
Building a Hosting Platorm with Python
Andrew Godwin

http://www.flickr.com/photos/whiskeytango/1431343034/

@andrewgodwin

Hi, I'm Andrew.
Serial Python developer
Django core committer
Co-founder of ep.io

We're ep.io
Python Platform-as-a-Service
Easy deployment, easy upgrades
PostgreSQL, Redis, Celery, and more

Why am I here?
Architecture Overview
What we use, and how
What did we learn?

Architectural Overview
In short: Ever so slightly mad.

Hardware
Real colo'd machines
Linode
EC2 (pretty unreliable)

(pretty reliable)
(pretty reliable)

IPv6 (as much as we can)

Network
Internal networks are easy
Cross-Atlantic latency is less fun
Variety of different restrictions

Daemons by the Dozen
We have lots of small components
17, as of June 2011
They all need to communicate

Redundancy, Redundancy, ...
It's very important that no site dies.
Everything can be run as a pair
HA and backups both needed
Cannot rely on a centralised state

Security
User data is paramount
Quite a bit of our code runs as root
Permissions, chroot, other isolation
VM per site is too much overhead

Variety
Python sites are pretty varied
We need other languages to work too
Some things (PostgreSQL vs MySQL)
we have to be less flexible on

What do we use?
Lots of exciting things, that's what.

Basic Technologies
Eventlet, ZeroMQ, PostgreSQL
Historically, Redis
Ubuntu/Debian packages & tools

Moving Data
Message-passing (ZeroMQ, was Redis)
Stored state (PostgreSQL, plain text)

Storage
We're testing btrfs and GlusterFS
One type needed for app disk images
One type needed for app data store
(mounted on every app instance)

Eventlet
A shiny, coroutine-filled future

What is eventlet?
Greenlet-based async/"threading"
Multiple hubs (including libevent)
Threads yield cooperatively on any
async operations

Brief Example
from eventlet.green import urllib

results = {}

def fetch(key, url):
 # The urlopen call will cooperatively yield
 results[key] = urllib.urlopen(url).read()

for i in range(10):
 eventlet.spawn(fetch, i, "http://ep.io/%s" % i)

There's also a waitall() method on GreenPools
while len(results) < 10:
 eventlet.sleep(1)

Standard Classes
Eventlet-based daemons
Multiple main loops, terminates if any die
Catches any exceptions
Logs to stderr and remote syslog

Daemon Example
from ... import BaseDaemon, resilient_loop

class Locker(BaseDaemon):
 main_loops = ["heartbeat_loop", "lock_loop"]

 def pre_run(self):
 # Initialise a dictionary of known locks.
 self.locks = {}

 @resilient_loop(1)
 def heartbeat_loop(self):
 self.send_heartbeat(
 self.lock_port,
 "locker-lock",
)

Greening The World
You must use greenlet-friendly libraries
Others will work, but just block
Eventlet supports most of stdlib
Can monkeypatch to support other modules

We're Not In Kansas Anymore
You can still have race conditions
Ungreened modules block everything
Some combiantions have odd bugs
(unpatched Django & psycopg2)

Still, it's really useful
We've had upwards of 10,000 threads
multiprocessing falls over at that level
eventlet is easier to use than threading
(much less chance of race conditions)

Redis
Small but perfectly formed.

The Beginning
Everything in Redis
No, really - app disk images too
Disk images quickly moved to, uh, disk

February - March
Doing lots of filtering "queries"
Moved user info, permissions to Postgres
App info, messaging still there

Recently
App info moved to Postgres
Messaging moved to ZeroMQ
Not used by backend any more

Why?
It's a great database/store, but not for us
We may revisit once we get PGSQL issues
Looking forward to Redis Cluster

ØMQ
A møose taught me the symbol.

What is ZeroMQ?
It's NOT a message queue
Basically high-level sockets
Comes in many delicious flavours:
PUB/SUB REQ/REP PUSH/PULL
 XREQ/XREP PAIR

ZeroMQ Example
from eventlet.green import zmq

ctx = zmq.Context()

Request-response style socket
sock = ctx.sock(zmq.REQ)

Can connect to multiple endpoints, will pick one
sock.connect("tcp://1.2.3.4:567")
sock.connect("tcp://1.1.1.1:643")

Send a message, get a message
sock.send("Hello, world!")
print sock.recv()

How do we use it?
Mostly REQ/XREP
Custom @zmq_loop decorator
JSON + security measures

zmq_loop example
from ... import BaseDaemon, zmq_loop

class SomeDaemon(BaseDaemon):

 main_loops = ["query_loop", "stats_loop"]
 port = 1234

 @zmq_loop(zmq.XREP, "port")
 def query_loop(data):
 return {"error": "Only a slide demo!"}

 @zmq_loop(zmq.PULL, "stats_port")
 def stats_loop(data):
 # PULL is one-way, so no return data
 print data

Other Nice ZeroMQ things
Eventlet supports it, quite well
Can use TCP, PGM, or in-process comms
Can be faster than raw messages on TCP
Doesn't care if your network isn't up yet

PTYs
Or, How I Learned To Stop
Worrying And Love Unix

What is a PTY?
It's a process-controllable terminal
Used for SSH, etc.
We needed them for interactivity

Attempt One
Just run processes in subprocess
Great, until you want to be interactive
Some programs insist on a terminal

Attempt Two
Python has a pty module!
Take the raw OS filehandles
Try to make it greenlet-compatible
Works! Most of the time...

Greened pty example
def run(self):
 # First, fork to a new PTY.
 gc.disable()
 try:
 pid, fd = pty.fork()
 except:
 gc.enable()
 raise
 # If we're the child, run our program.
 if pid == 0:
 self.run_child()
 # Otherwise, do parent stuff
 else:
 gc.enable()
 ...

Greened pty example
 fcntl.fcntl(self.fd, fcntl.F_SETFL, os.O_NONBLOCK)
 # Call IO greenthreads
 in_thread = eventlet.spawn(self.in_thread)
 out_thread = eventlet.spawn(self.out_thread)
 out_thread.wait()
 out_thread.kill()
 # Wait for process to terminate
 rpid = 0
 while rpid == 0:
 rpid, status = os.waitpid(self.pid, 0)
 eventlet.sleep(0.01)
 in_thread.wait()
 in_thread.kill()
 os.close(self.fd)

Attempt Three
Use subprocess, but with a wrapper
Wrapper exposes pty over stdin/stdout
Significantly more reliable

Lesser-Known Modules
They just want to be your friend.

The resource module
Lets you set file handle, nproc, etc. limits
Lets you discover limits, too

The signal module
Want to catch Ctrl-C in a sane way?
We use it to quit cleanly on SIGTERM
Can set handlers for most signals

The atexit module
Not terribly useful most of the time
Used in our command-line admin client

The shlex module
Implements a shell-like lexer
shlex.split("command string") gives
you arguments for os.exec

The fcntl module
The portal to a dark world of Unix
We use it for fiddling blocking modes
Also contains leases, signals, dnotify,
creation flags, and pipe fiddling

Closing Remarks
Because stopping abruptly is bad.

Adopting fresh technologies
can be a pain.

Eventlet, ZeroMQ, new Redis are all young
OS packaging and bugs not always
fully worked out.

Don't reinvent the wheel, or
optimize prematurely.

Old advice, but still good.
You really don't want to solve things
the kernel solves already.

Reinvent the wheel,
occasionally

Don't necessarily use it
Helps you to understand the problem
Sometimes it's better (e.g. our balancer)

Python is really very capable
It's easy to develop and maintain
It's not too slow for most jobs
There's always PyPy...

Questions?
Andrew Godwin
andrew@ep.io
@andrewgodwin

