
TurboGears2

Building
Full Featured Web Applications

 with TurboGears2
in a bunch of minutes

Alessandro Molina - @__amol__ - amol@turbogears.org

TurboGears2

● Framework for rapid development encouraging
customization

● Object Dispatch based. Regular expressions can get
messy, never write a regex anymore

● By default an XML template engine with error
detection

● Declarative Models with transactional unit of work

● Built in Validation, Authentication, Authorization,
Caching, Sessions, Migrations, MongoDB Support and
many more.

Looking at the code

class RootController(BaseController):

 @expose('myproj.templates.movie')
 @expose('json')
 @validate({'movie':SQLAEntityConverter(model.Movie)}
 def movie(self, movie, **kw):
 return dict(movie=movie, user=request.identity and request.identity['user'])

Serving /movie/3 as a webpage and /movie/3.json as
a json encoded response

What it looks like

TurboGears for RAD

● 2.0 had sprox and tgext.crud: Flexible, but hard to use!
● 2.1 had many sprox improvements and added the

EasyCrudRestController
● 2.1.4 had many hooks improvements that made tgext.

pluggable possible!

With EasyCrudRestController and pluggable applications
rapid prototyping can be rapid for real

EasyCrudRestController

Aims at making possible to create full administrative
interfaces in a bunch of seconds

Easy CRUD

Minimal setup is minimal for real!

from tgext.crud import EasyCrudRestController

class GalleriesController(EasyCrudRestController):
 model = model.Gallery

This provides CRUD interface with Search, ordering and
autogenerated JSON Rest API for that model.

Custom CRUD

Customizing the Crud Controller can be done from the
__form_options__ and __table_options__ variables of the
class.

class PhotosController(EasyCrudRestController):
 model = model.Photo
 allow_only = predicates.in_group('photos')
 title = "Manage Photos"
 keep_params = ['gallery']

 __form_options__ = {
 '__hide_fields__' : ['uid', 'author', 'gallery'],
 '__field_widget_types__' : {'image':FileField},
 '__field_validator_types__' : {'image':FieldStorageUploadConverter},
 '__field_widget_args__' : {'author':{'default':lambda:request.identity['user'].user_id}}
 }

 __table_options__ = {
 '__omit_fields__' : ['uid', 'author_id', 'gallery_id', 'gallery'],
 '__xml_fields__' : ['image'],
 'image': lambda filler,row: html.literal('‹img src="%s"/›' % row.image.thumb_url)
 }

Custom CRUD Result

Result is a web page to upload photos to a gallery with
uploaded image preview

Let's plug them all

CRUD tools provide a quick and easy way to prototype new
functions.

But... there are things which are not a plain CRUD, how can
you speed up their development?

Fastest solution is to have things already done by someone
else!

That's what pluggable applications are for

Pluggables

Pluggable applications provide ready made features that can
be plugged into your applications.
● Implemented as tgext.pluggable, if you don't use them

they won't bother you
● As easy as plug(base_config, 'appname')
● They look a lot like a plain application and provide

models, controllers, templates, helpers, partials,
database bootstrap and so on.

● Creating one as easy as paster quickstart-pluggable
appname

● Sadly supported only for SQLAlchemy storage backed,
mongodb planned

Available Pluggables
tgapp-registration

Provides a registration
process with activation
email. It's heavily
customizable using
hooks.

tgapp-fbauth

facebook authentication,
registration and
connection to existing
accounts.

tgapp-smallpress

Provides multblog with
WYSIWYG editor,

tagcloud, attachments,
drafts, future

publications and
Whoosh based search.

tgapp-photos

Provides partials to
display photos and

photo galleries with
automatic thumbnails.

Available Pluggables
tgapp-userprofile

Provides a basic profile
page and badge
for users with profile
picture took from
facebook, gravatar or
custom source.

stroller

Provides eCommerce
application with
categories, multiple
pictures for each product
and orders management.

libacr

Provides a powerful
CMS where pages

are splitted into slices
each editable

and of its own type.

Custom slices and
new type of contents
can be easily created
directly from the CMS
itself without editing

code.

DebugBar

To improve developers life the first pluggable application
created has been the debugbar.

● Controller methods
profiling

● Template Rendering
timings

● Query inspector
● Request inspector
● and so on... The

usual things you
would expect from a
debug bar!

Inventing Mode

How the debugbar relates to rapid prototyping?
Well, it makes life easier, but mostly... It provides the
inventing mode!

Place your browser and code editor side by side and start
experimenting, your changes will reflect into the browser in
real time and it will notify you when you broke something.

Creating pluggables

Once tgext.pluggable gets installed the quickstart-pluggable
command becames available.

Running quickstart-pluggable will create a package that
looks a lot like a TurboGears application but provides a
plugme method inside its __init__.py

plugme method is the entry point of your pluggable
application.

def plugme(app_config, options):
 return dict(appid='plugtest', global_helpers=False)

Structure of a Pluggable
$ paster quickstart-pluggable plugtest

Pluggable Applications controllers, root
controller of the application is named
RootController inside the root.py file and
will be mounted as /plugtest

Models of the pluggable applications, will
be bound to the session of the master app

Static files of the pluggable application,
will be available at /_pluggable/plugtest

Templates of the pluggable application,
controllers can use them with standard
expose syntax: @expose('plugtest.
templates.index')

Structure of a Pluggable

Here rely all the utility functions of the
pluggable application. By default they are
not exposed to the master application but
are stille accessible as a python module

bootstrap is automatically called when
initializing the database of the master
application.

Pluggables can provide helpers which will
be automatically available into the master
application as h.plugtest.helpername

Partials are evolved helpers, they provide logic
and look like controllers with an exposed
template. They are acceissible inside templates
with h.call_partial('plugtest.partials:
partialname')

Pluggable Utilities

tgext.pluggable provides a bunch of utilities that help when
working with pluggable applications to override part of their
aspect or behavior:

● replace_template(base_config, 'otherapp.templates.about', 'myapp.

templates.index') permits to replace any template with another one,
makes possible to change the look of any plugged web page

● plug_url('plugtest', '/somewhere') makes possible to generate urls relative
to a plugged application

● tgext.pluggable.app_model provides the models of the application where the
pluggable app will be plugged.

● tgext.pluggable.primary_key(Model) detects the primary key of a model so
that it is possible to create relations to models we don't know how they look
like.

Join turbogears@googlegroups.com for more details!

